МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Биологическая сущность воспаления.





И.И. Мечников 25 в течение лет исследовал фагоцитоз. Его метод сравнительной патологии – изучение процесса в эволюционном аспекте. Он доказал, что воспаление встречается у всех представителей животного мира. У одноклеточных защита и питание совпадают. У низших многоклеточных (губка) фагоцитировать могут все клетки. При формировании зародышевых листков фагоцитоз закрепляется за мезодермой. При формировании сосудистой системы открытого типа (раки) фагоциты проще и быстрее доставляются в очаг воспаления, а у высших к фагоцитарной реакции присоединяется реакция сосудов, нервной системы и соединительной ткани. Это реакция целостного организма, выработанная в процессе эволюции, имеет защитно-приспособительное значение – в основе защиты лежит фагоцитоз, все остальное есть лишь аксессуары воспалительной реакции. Имеется прямая зависимость воспалительной реакции от общего состояния – реактивности и резистентности, которые обеспечивают появление, развитие, течение и исход воспаления.

Воспаление может быть:

- нормергическое – при хорошей реактивности у здоровых лиц,

- гиперергическое (очень бурное) – при аллергии или у холериков,

- гипоергическое – как положительная гипо- и анергия при иммунитете иотрицательная гипо- и анергия при низкой реактивности, голодании, истощении регуляторных систем (нервной и эндокринной).

 

ЛИХОРАДКА

1. Определение понятия лихорадка.

2. Патогенез клинических проявлений лихорадки.

3. Этиология лихорадки.

4. Патогенез лихорадочной реакции.

Лихорадка febris, pyrexia – типовое изменение терморегуляции высших гомойотермных животных и человека на воздействие пирогенных раздражителей, выражающееся перестройкой терморегуляторного гомеостаза организма на поддержание более высокого уровня теплосодержания и температуры тела.

Лихорадка – это типический патологический процесс, при котором повышение температуры тела не зависит от температуры окружающей среды. По своему биологическому значению лихорадка – это защитно-приспособительная

реакция.

Принято выделять ядро организма и его оболочку. Ядро составляют мозг, грудная, брюшная и тазовая полости. В ядре организма температура жестко фиксирована в пределах 37° – т.е. ядро гомойотермно. А температура оболочки зависит от температуры окружающей среды. Таким образом, оболочка -пойкилотермна.

Какие же механизмы так тонко регулируют теплопродукцию и теплоотдачу? Это осуществляет центр терморегуляции гипоталамуса. Он состоит из трех различных морфологических образований:

1) – термочувствительная часть;

2) – термоустановочная часть, определяет уровень температуры тела;

3) – два эфферентных образования:

а) центр теплопродукции; б) центр теплоотдачи. Стадии лихорадки:

1) Stadium incrementi – стадия подъема температуры тела;

2) Stadium fastigii – стадия стояния высокой температуры;

3) Stadium decrementi – стадия снижения температуры, возврат ее к норме.Клиническая характеристика стадий:

1-я стадия – повышение температуры характеризуется ознобом, сопровождающимся ощущением холода. Патогенез озноба – происходит спазм сосудов кожи и понижение температуры кожи на 10–12° (кроме подмышечной и паховой области). Это вызывает раздражение Холодовых рецепторов (ощущение холода) и ответную реакцию на холод – мышечную дрожь. Субъективно все это воспринимается, как озноб. Подъем температуры тела может быть быстрым, а озноб очень сильным и наоборот, медленным, постепенным, с незначительным ознобом или даже без него.



Во второй стадии (патогенез жара). Это ощущение обусловлено расширением сосудов кожи при высокой температуре тела. По особенностям температурной кривой (высоты подъема) в зависимости от характера ее колебаний в течение суток различают следующие виды лихорадки:

1) субфебрильную – до 38°; 2) умеренную – 38–39°; 3) высокую – 39–40°; 4) чрезмерную – гиперпиретическую (41° и выше). Во время лихорадки температура тела может доходить до 42°. При превышении этой границы возникают глубокие нарушения функции ЦНС и возникает угроза для жизни.

Степень повышения температуры при различных заболеваниях зависит:

1) от реактивности организма (например, у холериков температура тела поднимается выше);

2) от введения возбуждающих ЦНС веществ: кофеин, фенамин (а наркоз и бромиды снижают реакцию);

3) от пирогенной активности микробов;

4) от интенсивности выработки эндогенных пирогенов, (это определяется количеством лейкоцитов);

5) от функционального состояния центров терморегуляции и образования медиаторов.

Типылихорадочных (температурных) кривых:

1) постоянная температурная кривая (Febric continua) – колебания в пределах не более 1°;

2) ремиттирующая – Febris remitens – или послабляющая (колебания температуры в пределах 1,5–2°);

3) перемежающаяся или интермиттирующая – Febric intermitens- это правильное чередование нормальной температуры с периодами подъема;

4) возвратная – Febric recurrens – 5–7 дней лихорадка и 3–4 дня норма,т.е. промежутки между лихорадочным периодом и периодами нормы, как правило, не одинаковые;

5) изнуряющая или гектическая – Febric hectica – колебания температуры в течение суток доходят до 3–5° (утром норма, вечером 40°). При этом лихорадка может быть атипичной, когда утром температура выше, чем вечером.

Патогенез 3 стадии (снижения температуры) проявляется клинически потоотделением. Потоотделение является основным видом отдачи тепла в период снижения температуры и возврата ее к норме. Температура тела может падать быстро (критически) и медленно (литически). Быстрое падение температуры может быть опасным, кризис может привести к коллапсу от острой сердечной недостаточности.

Этиологические факторы лихорадки. Они делятся на инфекционные и неинфекционные: это липополисахариды микробов, их экзо- и эндотоксины. вирусы, риккетсии, клетки чужеродного трансплантата, продукты распада собственных тканей, лимфокины, хемотаксины, комплекс аллерген-антитело, аллергены. Лихорадка вызывается особыми веществами – пирогенами. По происхождению они делятся на:

1) экзопирогены (из эндотоксинов микробов – бактериальные).

2) эндопирогены (клеточные).

Характеристика экзопирогенов: по химическому строению – это высокомолекулярные липополисахариды.

Установлено, что:

1) экзопирогены вызывают лихорадку опосредованно через образование эндопирогенов, поэтому лихорадка развивается через 45 – 60 минут и максимум ее через 3–4 часа;

2) экзопирогены не токсичны;

3) экзопирогены термоустойчивы (для разрушения надо автоклавировать в течение 1–2 часов при температуре 200°);

4) не аллергенны;

5) не антигенны;

6) экзопирогены являются гаптенами и для приобретения антигенных свойств они должны соединиться с белками клеток и тканей;

7) при ежедневном введении 5–6 раз к экзопирогенам возникает толерантность, и лихорадка не развивается;

8) экзопирогены вызывают ряд защитных эффектов.

Эндогенные пирогены: их источником являются нейтрофилы, макрофа­ги и лимфоциты крови – это лейкоцитарные пирогены или интерлейкин-1Свойства лейкопирогенов:

1) вырабатываются только живыми лейкоцитами, по строению – это бе­лок типа альбумина;

2) неустойчивы к нагреванию – разрушаются при температуре, вызывающей коагуляцию белка (60–70°);

3) температурная реакция на эндопироген развивается через 10–15 мин.Максимум подъема температуры после введения эндопирогена через 1–2 часа.

Характеристика интерлейкина-1:

1) он вырабатывается в микро- и макрофагах, не вызывает толерантности,нетоксичен, действует на все основные регулирующие системы организма и прежде всего те, которые определяют реактивность и резистентность – нервную и эндокринную;

2) действует на клетки гипоталамуса и усиливает выработку CRF, которые запускают стрессреакцию, мобилизует энергетические ресурсы, и в организме развиваются гипергликемия, липемия.

Эндопирогены дают такой же биологический эффект, как и экзопирогены, повышая защитные свойства организма:

1) усиливают фагоцитоз;

2) усиливают выработку глюкокортикоидов;

3) усиливают регенерацию тканей, которая ведет к образованию нежных рубцов (применяется при повреждении ЦНС для предотвращения осложнений (эпилепсии, парезов, параличей);

4) усиливают дезинтоксикационную функцию печени;

5) улучшают процессы микроциркуляции – вот почему пирогены применяются при вялом течении заболеваний, при хронической язве желудка для ускорения заживления и рубцевания язв, при почечной гипертонии для улучшения процессов микроциркуляции в почках (в нефроне, клубочках) и уменьшения выработки ренина.

Лейкопироген вырабатывается при раздражении лейкоцитов: 1)при воспалении;

2) действии токсинов;

3) под влиянием шероховатости стенки сосудов, при контакте лейкоцитов с микробами даже в кровеносном русле;

4) при изменении рН в кислую сторону (ацидоз).

Характеристика лимфоцитарных и макрофагальных пирогенов. Макрофаги крови альвеол и брюшины в процессе фагоцитоза вырабатывают такое же вещество, как нейтрофилы – интерлейкин-1. Лимфоцитарный пироген вы­рабатывается сенсибилизированными лимфоцитами при аллергии при контакте с аллергеном.

Патогенез лихорадочной реакции механизмы накопления тепла в организме. Измерение количества тепла в организме методом прямой калориметрии показало, что увеличение образования тепла не превышает 25 %. Лишь в стадии стояния температуры на высоких цифрах увеличение образования тепла достигает 40 %. Каковы же особенности теплообмена при лихорадке? Почему повышается температура тела?

Возможны 2 варианта:

1) уменьшение теплоотдачи;

2) усиление теплопродукции.

Исследование влияния пирогенов показало, что организм сам активно формирует лихорадку. Подъем температуры в начальной стадии связан с уменьшением теплоотдачи – это главное звено патогенеза. Усиление теплопродукции помогает быстрее повысить температуру (быстрее разогреться).

Цепь патогенеза лихорадки:

1) внедрение экзогенных пирогенов в организм;

2) взаимодействие экзопирогенов с фагоцитами организма;

3) активация фагоцитов;

4) выделение активированными фагоцитами интерлейкина-1;

5) воздействие интерлейкин-1на центр терморегуляции (в 1-ю очередь на термоустановочную точку);

6) повышение возбудимости холодочувствительных нейронов и снижение возбудимости теплочувствительных нейронов;

7) индукция усиленного синтеза простагландина Е2в нервных клеткахгипоталамуса и возбуждение симпатоадреналовых структур;

8) ограничение теплоотдачи (за счет спазма поверхностных сосудов) и повышение теплопродукции;

9) повышение температуры тела до нового уровня регулирования.

Влияние на лихорадку физической работы и температуры окружающей среды – установлено, что: 1) физическая работа, 2) умеренное согревание или 3) умеренное охлаждение при лихорадке температуру тела не меняют. Увеличение теплообразования даже более чем на 200 % не меняет температуры тела. При лихорадке механизмы терморегуляции находятся в активном состоянии, лихорадящий организм удерживает температуру на высоких цифрах, сохраняя температурный гомеостаз.

Состояние центров теплорегуляции находит отражение в характере температурной кривой:

- лихорадка постоянного типа свидетельствует об устойчивом (оптимальном) возбуждения центра терморегуляции;

- ремиттирующая кривая свидетельствует о неустойчивости возбуждения центра терморегуляции;

- интермиттирующая лихорадка характерна для септического состояния.Неблагоприятно протекает гектическая лихорадка – она свидетельствует о том, что периоды возбуждения центра терморегуляции сменяются периодами запредельного торможения. Характер температурной кривой отражает состояние реактивности дыхательного и вазомоторного центров. Вот почему эти кривые имеют диагностическое и прогностическое значение. Особенно неблагоприятным является извращенный характер лихорадки – что говорит о быстром истощения центра терморегуляции.

Биологическое значение лихорадки – в основном создание более высокого температурного фона для обменных процессов, что ведет к повышению уровня защитных реакций: 1) активирование ферментов; 2) усиление фагоцитоза. Известно, что биохимические процессы протекают значительно быстрее при температуре 39°, чем при 36°. Это одна из приспособительных реакций организма.

 

ГИПЕРТЕРМИЯ

1. Виды, причины и патогенез гипертермии.

2. Отличие лихорадки от гипертермии.

Гипертермия патологический процесс, характеризующийся повышением температуры тела, уровень которой в основном зависит от окружающей среды. Это очень опасное состояние, т.к. оно сопровождается поломом механизмов терморегуляции. Гипертермия возникает при таких условиях, когда организм не успевает выделить избыточное количество тепла. В отличие от лихорадки, гипертермия состояние организма, характеризующееся нарушением теплового баланса и повышением теплосодержания организма.

Величина теплоотдачи регулируется физиологическими механизмами, важнейшим из которых является вазомоторная реакция. Благодаря снижению тонуса сосудов кровоток в коже человека может возрасти от 1 до 100 мл/мин на 100 см. Другим важнейшим механизмом является потоотделение – при интенсивной работе потовых желез выделяется до 1,5 л пота в час (на испарение 1 г воды тратится 0,58 ккал, а всего на 1,5 л 870 ккал/час) и этого достаточно для удержания нормальной температуры при тяжелой работе в условиях повыше­ния температуры окружающей среды. Третий механизм – испарение водысо слизистых оболочек дыхательных путей.

Классификация гипертермии в зависимости от источника образования избытка тепла:

1) гипертермия экзогенного происхождения (физическая, простая);

2) эндогенная гипертермия (токсическая);

3) гипертермия, возникающая в результате перераздражения симпатоад-реналовых структур (бледная гипертермия).

Экзогенная гипертермия возникает при длительном и значительном повышении температуры окружающей среды (при работе в горячих цехах, в жарких странах и т.п.), при большом поступлении тепла из окружающей среды (особенно в условиях высокой влажности, что затрудняет потоотделение) и в этом случае может быть тепловой удар. Это физическая гипертермия при нормальной терморегуляции.

Перегревание тела сопровождается усиленным потоотделением со значительной потерей организмом воды и солей, что ведет к сгущению крови, увеличению ее вязкости, затруднению кровообращение и кислородному голоданию. Ведущими звеньями патогенеза теплового удара является расстройства водно-электролитного баланса из-за нарушения потоотделения и деятельности гипоталамического центра терморегуляции.

Тепловой удар нередко сопровождается развитием коллапса. Нарушениям кровообращения способствует токсическое действие на миокард избытка калия, освобождающегося из эритроцитов. При тепловом ударе страдают также регуляция дыхания и функция почек, различные виды обмена.

В центральной нервной системе при тепловом ударе отмечают гиперемию и отек оболочек и ткани мозга, множественные кровоизлияния. Как пра­вило, наблюдается полнокровие внутренних органов, мелкоточечные кровоиз­лияния под плевру, эпикард и перикард, в слизистую оболочку желудка, ки­шечника, нередко отек легких, дистрофические изменения в миокарде.

Тяжелая форма теплового удара развивается внезапно: изменения сознания от легкой степени до комы, судороги клонического и тонического характера, периодическое психомоторное возбуждение, часто бред, галлюцинации. Дыхание поверхностное, учащенное, неправильное. Пульс до 120–140 в мин, малый, нитевидный, тоны сердца глухие. Кожа сухая, горячая или покрывается липким потом. Температура тела 41–42° и выше. На ЭКГ признаки диффузного поражения миокарда. Наблюдается сгущение крови с нарастанием остаточного азота, мочевины и уменьшения хлоридов. Может быть гибель от паралича дыхания. Летальность до 20–30 %.

Патогенетическая терапия – любое простое охлаждение.

Эндогенная (токсическая) гипертермия возникает в результате резкого увеличения образования тепла в организме, когда он не в состоянии выделить избыток тепла путем потоотделения и за счет других механизмов. Причиной этого является накопление в организме токсинов (дифтерийного, гноеродных микробов, в эксперименте – тироксина и а – динитрофенола). Если в норме энергия при окислении питательных веществ в основном (70 %) идет на синтез АТФ и на образование первичного тепла расходуется 30 %, то при токсической гипертермии энергия пищи идет только на образование тепла.

Стадии экзогенной и эндогенной гипертермии и их клиническое проявление:

А) приспособительная стадия характеризуется тем, что температура тела еще не повышена за счет резкого увеличения теплоотдачи путем:

1) усиленного потоотделения; 2) тахикардии; 3) расширения сосудов кожи; 4) учащенного дыхания.

Симптомы – головная боль, адинамия, тошнота, зрачки расширены. При оказании помощи симптомы гипертермии исчезают.

Б) стадия возбуждения – характеризуется еще большим ощущением жара и увеличением отдачи тепла, но этого недостаточно и температура тела повышается до 39 – 40°. Развивается резкая адинамия, интенсивная головная боль с тошнотой и рвотой, оглушенность, неуверенность в движения, периодически кратковременная потеря сознания. Пульс и дыхание учащены, кожа гиперемирована, влажная, потоотделение усилено. При лечении температура тела снижается, и функции нормализуются.

В) стадия параличей дыхательного и вазомоторного центров.

Патогенетическая терапия (поскольку жаропонижающие вещества при экзо – и эндогенной гипертермии не помогают) – температуру тела снижают только охлаждением тела любым путем.» Очень важно облегчить потоотделение. Помощь пострадавшему: удалить его из зоны перегревания в место, закрытое от солнца и открытое для движения воздуха, раздеть до пояса, смачивать холодной водой; на голову, шею, конечности и на область печени прикладывать пузыри со льдом или холодное полотенце. Ингаляция кислорода. Внутривенно или подкожно физраствор, глюкозу, при необходимости – камфору, кофеин, строфантин, лобелин, капельные клизмы. При необходимости – аминазин, димедрол, противосудорожные, при показании – разгрузочная спинномоз­говая пункция.

Бледная гипертермия (гипертермия в результате патологического возбуждения центров терморегуляции, гипертермический синдром). Причинами являются тяжелые инфекционные заболевания или введение в больших дозах веществ адренергического действия, или веществ, вызывающих резкую стимуляцию симпатической нервной системы. Это ведет к возбуждению симпатических центров, спазму сосудов кожи и резкому уменьшению теплоотдачи и повышению температуры тела до 40° и более. Причины гипертермического синдрома могут быть различными: функциональные нарушения или структурные повреждения гипоталамических центров терморегуляции, опухоли мозга, травмы мозга, кровоизлияния в мозг, инфекционные поражения, осложнения при наркозе в сочетании с миорелаксантами. Наркоз и миорелаксанты усугубляют дефект мембран мышечных клеток и увеличивают выброс в кровь клеточных ферментов. Это ведет к нарушению метаболизма в мышечной ткани, стимуляции актина и миозина, стойкому тоническому сокращению мышц, распаду АТФ в АДФ, увеличению в крови ионов К+ и Са++-симпатоадреналовый кризис и возникает симпатоадреналовая гипертермия. Температура тела может достигать 42–43° и развиваются: 1) общая мышечная ригидность; 2) спазм периферических сосудов, 3) повышение артериального давления; 4) тахикардия; 5) учащение дыхания; 6) гипоксия; 7) чувство страха.

Развивается быстронарастающий метаболический ацидоз, гиперкалиемия, анурия, повышение в крови креатининфосфатазы, альдолазы, миоглобина.

Патогенетическая терапия состоит в торможении симпато-адреналовых механизмов, снижении теплопродукции и повышении теплоотдачи. Применяют: анальгин, ацетилсалициловую кислоту, которые избирательно понижают чувствительность гипоталамического центра терморегуляции и усиливают теплоотдачу через усиление потоотделения. Проводится нейровегетативная блокада: аминазин, дроперидол. Антигистаминные препараты: димедрол, дипразин. Ганглионарные средства: пентамин, гигроний. Физическое охлаждение, краниоцеребральная гипотермия. Смертность при этой форме гипертермии – до 70 %.

Отличие лихорадки от гипертермии:

1) разные этиологические факторы;

2) разные проявления стадии подъема температуры – при лихорадке – озноб и умеренная стимуляция функций (на 1° повышения температуры тела увеличение пульса на 8–10 ударов в минуту и на 2–3 дыхательных движения), а при гипертермии резкое потоотделение, чувство жара, резкое учащение пульса и дыхания (на 10–15 дыхательных движений при повышении температуры тела на 1°);

3) при охлаждении тела при лихорадке температура не изменится, при гипертермии – снижается;

4) жаропонижающие снижают температуру при лихорадке и не влияют при гипертермии.

При лихорадке активируются процессы окислительного фосфорилирования, растет синтез АТФ, ускоряются защитные реакции. При гипертермии происходит блокада синтеза АТФ и их распад, образуется очень много тепла.

 

ПАТОФИЗИОЛОГИЯ ОПУХОЛЕВОГО РОСТА

 

1. Понятие об опухоли и ее влияние на организм.

2. Современное представление о канцерогенезе.

3. Возможные механизмы действия онкобелков.

4. Вирусогенетическая теория Зильбера.

5. Репарация поврежденной ДНК.

6. Противоопухолевый иммунитет.

Одним из наиболее актуальных, частых и тяжелых проявлений патологии тканевого роста является возникновение злокачественных опухолей, которые вслед за сердечно-сосудистыми заболевания занимают 2-е место среди причин смертности. Опухоль это типический патологический процесс, главным признаком которого является вызванное действием внешних факторов бесконечное и неконтролируемое организмом размножение клеток с нарушением их способности к дифференцировке и формированию организованных структур, т.е. местное патологическое разрастание ткани. Особенности опухолевого роста:

1) атипия органоидного строения;

2) способность к бесконечному размножению;

3) утрата или уменьшение способности к дифференцировке (часто невозможно установить к какой ткани они принадлежат);

4) относительная автономия и независимость от регулирующего влияния организма (клетки не могут организовать полноценные структуры и плоховзаимодействуют друг с другом);

5) опухоль способна к проникающему(инвазивному росту);

6) клетки способны метастазировать – распространяться от первичногоочага;

7) есть еще ряд особенностей: а) антигенных свойств, в) обмена веществ, б) химического состава.

Влияние злокачественных опухолей на организм. В основном, это две взаимосвязанные формы системного действия – конкуренция с тканями за жизненно важные метаболиты и трофические факторы, и отрицательное влияние опухолей на биологические характеристики тканей, приводящее к нарушению их дифференцировки и регулирующего влияния со стороны организма.

Особенно существенны сдвиги в углеводном обмене. В злокачественных опухолях не обнаруживается глюкоза, она полностью утилизируется. Опухоли способны «насасывать» глюкозу из крови. Опухолевая ткань является своеобразной ловушкой и для азота, как алиментарного, так и освобождающегося при распаде белков и нуклеиновых кислот.

Рост опухолей приводит к усиленной мобилизации липидов жировых депо – гиперлипидемии. Часть липидов ассимилируется опухолью для образования мембран пролиферирующими опухолевыми клетками. В основном, мобилизацию липидов считают компенсаторной реакцией на гипогликемическое влияние опухоли, позволяющей тканям при недостатке глюкозы использовать окисление жирных кислот, как дополнительный источник энергии.

При опухолях отмечены нарушения биологических характеристик различных тканей. Накапливаются ненасыщенные жирные кислоты, которые являются эффективными разобщителями фосфорилирования, снижается уровень иммунореактивного инсулина в сыворотке крови, нарушается зависимость между продукцией гормонов передней доли гипофиза и гормонами других желез внутренней секреции, повышен порог чувствительностигипоталамо-гипофизарной системы, регулирующей уровень адреналостероидов.

Современные представления о двухстадийной модели канцерогенеза можно суммировать следующим образом:

1) воздействия одного инициатора (initiare – начинать, фактор, которомупринадлежит почин в новом деле, первый шаг) или одного промотора(promotore – продвигать – активатор, катализатор) недостаточно для индукции опухоли;

2) действие инициатора и промотора не перекрываются во времени;

3) частота опухолей увеличивается только в том случае, если промотор действует после инициатора;

4) интервал между воздействием инициатора и промотора не влияет на частоту опухолей;

5) частота опухолей зависит лишь от дозы инициатора.

В течение 1-ой стадии канцерогенеза (инициации) происходят необратимые нарушения генотипа нормальной клетки, и она переходит в предрасположенное к трансформации состояние (латентная клетка). Канцероген или его активный метаболит взаимодействует с нуклеиновыми кислотами (ДНК и РНК) и белками клетки. Повреждения клетки могут иметь генетический и эпигенетический характер. Генетические повреждения выражаются: 1) генными мутациями (амплифация генов, реаранжировка, нарушение метилирования ДНК, активирование протоонкогенов) и 2) изменением числа хромосом.

II-ая стадия (промоции), в отличие от стадии инициации, обратима на раннем этапе процесса. В течение промоции инициированная в результате изменений генов клетка приобретает фенотипические свойства трансформированной клетки – (эпигенетический механизм). Однако для возникновения опухоли необходимо длительное и относительно непрерывное воздействие промоторов, оказывающих на клетки различное влияние. Промоторы влияют на клеточную дифференцировку и блокируют межклеточные связи, способствуют образованию свободных радикалов, индукции обмена сестринских хроматид, стимулируют экспрессию (силу проявления) ДНК-провирусов и некоторых ретровирусов, имеющих ревертазу (обратную транскриптазу, синтезирующую ДНК на матрице РНК, т.е. идет обратный поток информации от РНК к ДНК). Канцерогенез у человека представляет собой многостадийный процесс, раковая опухоль развивается из единичной клетки, которая в процессе малигнизации проходит ряд стадий. Влияние экзогенных канцерогенных агентов модифицирует скорость, с которой клетка переходит из одной стадии в другую.

Следствием мутаций, расположенных в кодирующих или регуляторных участках генома клетки-мишени, может явиться искажение функции отдельных кодонов генов, что вызовет существенное изменение аминокислотных последовательностей белков, их структуры и функции. Самыми существенными в отношении инициации канцерогенеза являются мутации в определенных кодонах локусов протоонкогенов, так как это может вызвать их функционирование в качестве онкогенов. Экспрессия онкогенов приводит к появлению онкобелков, специфично взаимодействующих с внутриклеточными мишенями. Это вызывает запуск каскада молекулярных процессов, приводящих к злокачественной трансформации клеток. Мишенями действия онкобелков могут быть рецепторы клеточных мембран, эффекторы митогенных сигналов, а так же ядерные белки, регулирующие транскрипцию клеточной ДНК. С другой стороны, онкобелки сами могут имитировать митогенный сигнал, обеспечивая инициированной клетке автономное деление без участия факторов роста (ФР). Процесс превращения нормальной клетки в раковую многостадиен как на молекулярном уровне, так и на уровне фенотипа клетки. Этот процесс контролируется не одним, а целым каскадом онкогенов, действующих кооперативно. Эта кооперация функций онкобелков и позволяет популяции трансформированных клеток противостоять защитным системам организма, что ведет к последующему росту и прогрессии новообразований.

Автономность роста малигнизированных клеток от внеклеточных влияний ФР обусловлена постоянной экспрессией некоторых протоонкогенов или онкогенов. Продукт их экспрессии – онкобелки – перенимают функцию внеклеточных факторов, и сами по себе являются ФР или рецепторами, передающими экстраклеточные регуляторные сигналы. Онкобелки контролируют или принимают участие в важных процессах жизнедеятельности клеток и организма в целом. Функции протоонкогенов настолько важны, что количественные или структурные аномалии в них приводят к серьезным последствиям в росте и дифференцировке стволовых клеток организма. Активация протоонкогенов и превращение их в онкогены может происходить различными путями, одним из них может быть гипометилирование ДНК (снижение уровня 5-метилцитозина), что в норме происходит с возрастом. Таким образом, если «старая ДНК» уже гипометилирована, то для преодоления регуляторного порога могут потребоваться меньшие мутации, вызывающие гипометилирование.

В настоящее время в качестве ведущего, центрального элемента транс­формации наибольшее распространение получила концепция «аутокринной активации» пролиферации клеток. Возможный механизм туморогенного дей­ствия онкогенов заключается в том, что неадекватное появление онкобелка, при наличии рецептора на клеточной мембране или внутри клетки, приводит к аномальной стимуляции роста клеток собственным фактором роста. Следстви­ем же аномальной пролиферации является трансформация клеток, которая при наличии других соответствующих с этим онкобелком факторов приводит к малигнизации. Канцерогенные агенты оказывают не только непосредственное воздействие на клетку, вызывая в ней стойкое изменение генотипа, но и опо­средованное, создавая в организме условия, благоприятствующие ее выжива­нию. Еще до появления обнаруживаемой опухоли, в первые часы и дни после воздействия канцерогена, в организме развиваются глубокие сдвиги, обеспечи­вающие энергетические и пластические потребности превращения иницииро­ванной клетки в злокачественную опухоль – это нарушения углеводного и жирового обмена, изменения биогенных аминов в гипоталамусе, сказывающиеся на гормональной регуляции пролиферации, изменения иммунитета.

Каков механизм действия вируса? Согласно вирусогенетической теории Зильбера, вирус имеет ведущую роль в возникновении опухолей, а химические и физические факторы выполняют лишь роль условий, способствующих опухолеродному действию вируса, как бы расшатывая наследственность и под­готавливая мутации. Считают, что только вирус способен вызвать превращение здоровых клеток в опухолевые в культуре ткани. Вирус – это новый ген, который, внедряясь в клетку, приносит новую информацию, нарушающую дифференцировку клетки и ее созревание.

Активация вируса, возбуждение его нуклеиновых кислот ведет к тому, что они объединяются с генетическим аппаратом клетки, создавая в ней новые генетические свойства – это интеграция вируса.

Однако контакт организма с безусловно канцерогенными агентами и повреждения, производимые ими в геноме, далеко не всегда приводят к возникновению злокачественных образований. Клетка обладает сложной системой репарации (восстановления) повреждений ДНК, вызываемых самыми разнообразными агентами, в том числе и канцерогенами. Эффективное функционирование этой системы обеспечивает возможность сохранения нормального генотипа клетки, несмотря на постоянное действие канцерогенных факторов.

Важным этапом репарации ДНК является их вырезание – эксцизия. Ферменты, производящие эксцизию, подразделяются на две основные группы: гли-козилазы, разрезающие связь измененного основания с дезоксирибозой, и нук-леазы, которые разрезают цепь ДНК путем расщепления фосфодиэстеразной связи, примыкающей к поврежденному участку. После этого экзонуклеазы вырезают измененный участок. В последующем ДНК-полимеразы заполняют разрыв ДНК соответствующим дезоксинуклеотидом, и целостность фосфатной цепи ДНК восстанавливает полинуклеотидлигаза.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.