МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Простейшие системы массового обслуживания, примеры использования при решении экономических задач





 

1. Одноканальная СМО с отказами.

Пример. Пусть одноканальная СМО с отказами представляет собой один пост ежедневного обслуживания (ЕО) для мойки автомобилей. Заявка - автомобиль, прибывший в момент, когда пост занят, - получает отказ в обслуживании.

Интенсивность потока автомобилей = 1,0 (автомобиль в час).

Средняя продолжительность обслуживания - 1,8 часа.

Поток автомобилей и поток обслуживания являются простейшими.

Требуется определить в установившемся режиме предельные значения:

- относительной пропускной способности q;

- абсолютной пропускной способности А;

- вероятности отказа Pотк.

Необходимо сравнить фактическую пропускную способность СМО с номинальной, которая была бы, если бы каждый автомобиль обслуживался точно 1,8 часа и автомобили следовали один за другим без перерыва.

2. Одноканальная СМО с ожиданием

Характеристика системы

Ø СМО имеет один канал.

Ø Входящий поток заявок на обслуживание - простейший поток с интенсивностью.

Ø Интенсивность потока обслуживания равна m (т. е. в среднем непрерывно занятый канал будет выдавать m обслуженных заявок).

Ø Длительность обслуживания - случайная величина, подчиненная показательному закону распределения.

Ø Поток обслуживания является простейшим пуассоновским потоком событий.

Ø Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Граф состояний

Состояния СМО имеют следующую интерпретацию:

S0 - «канал свободен»;

S1 - «канал занят» (очереди нет);

S2 - «канал занят» (одна заявка стоит в очереди);

…………………………………………………….

Sn - «канал занят» (n -1 заявок стоит в очереди);

SN - «канал занят» (N - 1 заявок стоит в очереди).

Стационарный процесс в данной системе описывается следующей системой алгебраических уравнений:

Решением системы уравнений является:

Тогда:

3. Одноканальная СМО с ограниченной очередью.

Длина очереди:(N - 1)

Характеристики системы:

1. Вероятность отказа в обслуживании системы:

2. Относительная пропускная способность системы:

3. Абсолютная пропускная способность системы:

4. Среднее число находящихся в системе заявок:

5. Среднее время пребывания заявки в системе:

6. Средняя продолжительность пребывания клиента (заявки) в очереди:

7. Среднее число заявок (клиентов) в очереди (длина очереди):

Пример.

Специализированный пост диагностики представляет собой одноканальную СМО.

Число стоянок для автомобилей, ожидающих проведения диагностики, ограниченно и равно 3 [(N - 1) = 3]. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится.

Поток автомобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность 0,85 (автомобиля в час).

Время диагностики автомобиля распределено по показательному закону и в среднем равно 1,05 час.

Требуется определить вероятностные характеристики поста диагностики, работающего в стационарном режиме.

 

4. Одноканальная СМО с ожиданием

без ограничения на длину очереди

Условия функционирования СМО остаются без изменений с учетом того, что N .

Стационарный режим функционирования такой СМО существует:



при t

для любого n = 0, 1, 2, ... и когда λ< μ.

Система уравнений, описывающих работу СМО:

 

 

Решение системы уравнений имеет вид:

 

n = 0, 1, 2, ...
где:

 
 

 


ХарактеристикиСМО:

1. Среднее число находящихся в системе клиентов (заявок):

 
 

 


2. Средняя продолжительность пребывания клиента в системе:

 

3. Среднее число клиентов в очереди на обслуживании:

 

 

4. Средняя продолжительность пребывания клиента в очереди:

Пример.

Специализированный пост диагностики представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих проведения диагностики, не ограниченно. Поток автомобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность λ = 0,85 (автомобиля в час). Время диагностики автомобиля распределено по показательному закону и в среднем равно 1,05 час.

Требуется определить вероятностные характеристики поста диагностики, работающего в стационарном режиме.

В результате решения задачи необходимо определить финальные значения следующих вероятностных характеристик:

ü вероятности состояний системы (поста диагностики);

ü среднее число автомобилей, находящихся в системе (на обслуживании и в очереди);

ü среднюю продолжительность пребывания автомобиля в системе (на обслуживании и в очереди);

ü среднее число автомобилей в очереди на обслуживании;

ü среднюю продолжительность пребывания автомобиля в очереди.

Решение.

1. Параметр потока обслуживания и приведенная интенсивность потока автомобилей:

μ = 0,952; ψ = 0,893.

2. Предельные вероятности состояния системы:

и т.д.

P0(t) определяет долю времени, в течение которого пост диагностики вынужденно бездействует (простаивает). В примере эта доля составляет 10,7%, так как P0(t) = 0,107.

3. Среднее число автомобилей, находящихся в системе

(на обслуживании и в очереди):

 
 

 


4. Средняя продолжительность пребывания клиента в системе

 

5. Среднее число автомобилей в очереди на обслуживание:

 

6. Средняя продолжительность пребывания автомобиля в очереди:

 

7. Относительная пропускная способность системы:

q = 1, т. е. каждая заявка, пришедшая в систему, будет обслужена.

8. Абсолютная пропускная способность:

 

Презентационное оформление материала представлено в файле «ТМО»

Вопросы и задачи

(по Афанасьеву М.Ю. [2 ])

Вопрос 1. Одна работница обслуживает тридцать ткацких станков, обеспечивая их запуск после разрыва нити. Модель такой системы массового обслуживания можно охарактеризовать как:

1) многоканальную однофазовую с ограниченной популяцией;

2) одноканальную однофазовую с неограниченной популяцией;

3) одноканальную многофазовую с ограниченной популяцией;

4) одноканальную однофазовую с ограниченной популяцией;

5) многоканальную однофазовую с неограниченной популяцией.

Вопрос 2. В теории массового обслуживания для описания простейшего потока заявок, поступающих на вход системы, используется распределение вероятностей:

1) нормальное;

2) экспоненциальное;

3) пуассоновское;

4) биномиальное;

5) ничто из вышеуказанного не является верным.

Вопрос 3. В теории массового обслуживания предполагается, что количество заявок в популяции является:

1) фиксированным или переменным;

2) ограниченным или неограниченным;

3) известным или неизвестным;

4) случайным или детерминированным;

5) ничто из вышеуказанного не является верным.

Вопрос 4. Двумя основными параметрами, которые определяют конфигурацию системы массового обслуживания, являются:

1) темп поступления и темп обслуживания;

2) длина очереди и правило обслуживания;

3) распределение времени между заявками и распределение времени обслуживания;

4) число каналов и число фаз обслуживания;

5) ничто из вышеуказанного не является верным.

Вопрос 5. В теории массового обслуживания для описания времени, затрачиваемого на обслуживание заявок, обычно используется распределение вероятностей:

1) нормальное;

2)экспоненциальное;

3) пуассоновское;

4) биномиальное;

5) ничто из вышеуказанного не является верным.

Вопрос 6. Ремонт вышедших из строя компьютеров на эконо­мическом факультете осуществляют три специалиста, работающие одновременно и независимо друг от друга. Модель такой системы массового обслуживания можно охарактеризовать как:

1) многоканальную с ограниченной популяцией;

2) одноканальную с неограниченной популяцией;

3) одноканальную с ограниченной популяцией;

4) одноканальную с ограниченной очередью;

5) многоканальную с неограниченной популяцией.

 

 

Ответы на вопросы: 1—4, 2 — 3, 3—2, 4—4, 5—2, 6—1.


СЕТЕВОЕ ПЛАНИРОВАНИЕ И УПРАВЛЕНИЕ

Системы сетевого планирования и управления (СПУ) представляют особую разновидность систем организованного управления, предназначенных для регулирования производственной деятельности коллективов. Как и в других системах этого класса, «объектом управления» в системах СПУ является коллектив исполнителей, располагающих определенными ресурсами: людскими, материальными, финансовыми. Однако, данным системам присущ ряд особенностей, так как их методологическую основу составляют методы исследования операций, теория ориентированных графов и некоторые разделы теории вероятностей и математической статистики. Необходимым свойством системы планирования и управления является также способность оценивать текущее состояние, предсказывать дальнейший ход работ и таким образом воздействовать на ход подготовки и производства, чтобы весь комплекс работ был выполнен в заданные сроки и с наименьшими затратами.

В настоящее время модели и методы СПУ широко используются при планировании и осуществлении строительно-монтажных работ, планировании торговой деятельности, составлении бухгалтерских отчетов, разработке торгово-финансового плана и т.д.

Диапазон применения СПУ весьма широк: от задач, касающихся деятельности отдельных лиц, до проектов, в которых участвуют сотни организаций и десятки тысяч людей (например, разработка и создание крупного территориально-промышленного комплекса).

Для того чтобы составить план работ по осуществлению больших и сложных проектов, состоящих из тысяч отдельных исследований и операций, необходимо описать его с помощью некоторой математической модели. Таким средством описания проектов (комплексов) является сетевая модель.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.