ПОЗНАВАТЕЛЬНОЕ Сила воли ведет к действию, а позитивные действия формируют позитивное отношение Как определить диапазон голоса - ваш вокал
Игровые автоматы с быстрым выводом Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими Целительная привычка Как самому избавиться от обидчивости Противоречивые взгляды на качества, присущие мужчинам Тренинг уверенности в себе Вкуснейший "Салат из свеклы с чесноком" Натюрморт и его изобразительные возможности Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д. Как научиться брать на себя ответственность Зачем нужны границы в отношениях с детьми? Световозвращающие элементы на детской одежде Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия Как слышать голос Бога Классификация ожирения по ИМТ (ВОЗ) Глава 3. Завет мужчины с женщиной 
Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д. Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. | Ферменты как особые представители катализаторов УЧЕБНОЕ ПОСОБИЕ По курсу ОСНОВЫ ЭНЗИМОЛОГИИ (тексты лекций) Направление 020200.62 «Биология» КРАСНОЯРСК, 2008 ОГЛАВЛЕНИЕ Раздел 1.Структура и свойства ферментов | | Лекция 1.1. Методы регистрации ферментативной активности | | Лекция 1.2. Выделение и очистка ферментов | | Лекция 1.3. Уровни структурной организации ферментов | | Лекция 1.4. Кофакторы ферментов и их роль в катализе | | Лекция 1.5. Топография активных центров простых и сложных ферментов | | Раздел 2.Кинетика и термодинамика ферментативных реакций | | Лекция 2.1. Кинетика химических реакций | | Лекция 2.2. Стационарная кинетика ферментативных реакций | | Лекция 2.3. Ингибиторы ферментов | | Лекция 2.4. Ферменты, не подчиняющиеся кинетике Михаэлиса-Ментен | | Раздел 3. Механизмы ферментативного катализа | | Лекция 3.1. Факторы, определяющие эффективность действия ферментов | | Лекция 3.2. Механизм действия гидролаз на примере карбоксипептидазы А и лизоцима | | Лекция 3.3. Специфичность – уникальное свойство ферментов | | Раздел 4. Контроль активности ферментов | | Лекция 4.1. Ферменты в клетке и в организованных системах | | Лекция 4.2. Изостерические и аллостерические механизмы регуляции активности ферментов | | Лекция 4.3. Ковалентная модификация ферментов и ее типы | | Лекция 4.4. Регуляция количества ферментов в клетке | | Раздел 5. Прикладное значение ферментов | | Лекция 5.1. Генетическая инженерия ферментов | | Лекция 5.2. Ферменты в медицине (Часть I) | | Лекция 5.3. Ферменты в медицине (часть II) | | Библиографический список | | РАЗДЕЛ 1. СТРУКТУРА И СВОЙСТВА ФЕРМЕНТОВ ЛЕКЦИЯ 1.1 МЕТОДЫ РЕГИСТРАЦИИ ФЕРМЕНТАТИВНОЙ АКТИВНОСТИ Катализ и катализаторы. Ферменты как особые представители катализаторов Каждая химическая реакция характеризуется энергией активации (AG), т. е. свободной энергией, которую нужно придать реагирующим молекулам, чтобы произошло химическое превращение. Если осуществляется столкновение молекул с недостаточной свободной молекулой – химическая реакция не происходит. Таким образом, энергия активации – это энергетический барьер, который нужно преодолеть, чтобы произошла реакция. В процессе химических реакций молекулы вступают в так называемое переходное состояние, характеризующееся менее устойчивой структурой и наибольшей свободной энергией. Катализаторы снижают свободную энергию переходного состояния и, стабилизируя его, облегчают протекание реакции. Следует учитывать, что в энергии активации присутствует не только энтальпийная (DH, тепловая) составляющая, но и энтропийная (DS, мера упорядоченности системы). Высокая энтальпийная составляющая свидетельствует о том, что для формирования переходного состояния необходимо существенное ослабление химических связей. Для многих химических реакций механизм активации молекул, по-видимому, сходен, так как DH для них практически совпадает и составляет около 50 кДж ´ моль-1. Высокая энтропийная составляющая встречается реже и означает, что в процессе формирования переходного состояния молекулы должны принять строго определенную конформацию. Таким образом, катализатором называется вещество, ускоряющее химическую реакцию, но само в этой реакции не расходующееся. Функция катализатора состоит в том, что он реагирует с исходными веществами, образуя промежуточное соединение (новое переходное состояние), которое подвергается дальнейшему превращению с пониженной энергией активации. В результате образуются продукты реакции и регенерируется катализатор. Следует напомнить, что катализатор только ускоряет достижение равновесия в химической реакции, но не изменяет его положения (т.е. соотношения субстрата и продуктов). Присутствие катализатора не вызывает термодинамически невозможной реакции и не влияет на выход продуктов, поскольку катализатор не взаимодействует с продуктами реакции: Некатализируемая А ⇄ В Кр= ¾ реакция Катализируемая А + Cat ⇄ X ⇄ В + Cat Кр= ¾ реакция Из этих уравнений следует, что константа равновесия реакции (К) не зависит от присутствия катализатора, а следовательно, изменению константы скорости прямой реакции в присутствии катализатора всегда сопутствует соответствующее изменение константы скорости обратной реакции. Ферменты являются белковыми катализаторами биохимических реакций, большая часть которых в отсутствие ферментов протекала бы крайне медленно. В отличие от небелковых катализаторов (Н+, ОН-, ионы металлов) каждый фермент способен катализировать лишь очень небольшое число реакций, часто только одну. Таким образом, ферменты представляют собой реакционно специфические катализаторы. Механизмы химического и ферментативного катализа принципиально не различаются. Однако при нормальных «физиологических» условиях (рН и температуре) в водных растворах ферменты значительно более эффективны (сильнее снижают свободную энергию переходного состояния), чем химические катализаторы. Кроме того, ферменты, как правило, катализируют только один из возможных путей превращения субстратов, тогда как в ходе обычных химических реакций образуется смесь продуктов. Еще более существенным моментом является то, что ферменты обладают чрезвычайно высокой стереоспецифичностью, различая, например, оптические изомеры и даже изотопы одного и того же элемента. Это связано с особенностями структуры активных центров ферментов и конформационной «гибкостью» их молекул. Д. Кошланд сформулировал концепцию индуцированного соответствия, согласно которой при связывании специфического субстрата происходит такое изменение конформации фермента, которое перемещает каталитические группы в положение, обеспечивающее эффективное протекание реакции. Доказательства конформационных изменений в молекуле фермента при взаимодействии с субстратом получены методами ядерного магнитного резонанса (ЯМР) и рентгеноструктурного анализа (РСА). Например, при взаимодействии карбоксипептидазы А с «плохими» (отличающимися по химической структуре) субстратами происходит перемещение остатков двух аминокислот: тирозина и глутаминовой кислоты, которые предположительно участвуют в каталитическом процессе, на 15 и 2 Å соответственно. Этих перемещений достаточно для проявления макрофизических изменений. Такие конформационные изменения могут быть имитированы веществом, не являющимся субстратом данного фермента. Отсюда становятся понятными факты стимулирующего/ингибирующего влияния молекул, не участвующих непосредственно в ферментативной реакции. |