МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Скорость химической реакции





 

Основное понятие химической кинетики – скорость химической реакции. Скорость химической реакции есть изменение концентрации реагирующих веществ в единицу времени.

Математически определение средней скорости реакции Vср в интервале времени Δt записывается следующим образом:

 

(2.1.1)

Скорость в химии – величина скалярная, является положительной, отношение же может быть как положительным, таки отрицательным, в зависимости от того, рассчитывается ли по исходным веществам или продуктам. Очевидно, что концентрации исходных веществ во времени уменьшаются (ΔСисх < 0), а концентрации продуктов реакции увеличиваются (ΔСпрод > 0). Поэтому при расчете по исходным веществам в уравнении (2.1.1) выбирается минус, а по продуктам – плюс.

Истинная (или мгновенная) скорость реакции определяется как производная концентрации по времени:

(2.1.2)

 

Графическое изображение зависимости концентрации реагентов от времени называется кинетической кривой (рис. 2.1.1).

Рис. 2.1.1Кинетические кривые для исходных веществ (А) и продуктов реакции (В)

 

Истинную скорость реакции можно определить графически, проведя касательную к кинетической кривой (рис. 2.1.2); истинная скорость реакции в данный момент времени равна по абсолютной величине тангенсу угла наклона касательной (угловому коэффициенту в данной точке):

 

 

 

Рис. 2.1.2. Графическое определение wист

 

Необходимо отметить, что в том случае, если стехиометрические коэффициенты в уравнении химической реакции неодинаковы, величина скорости реакции будет зависеть от того, изменение концентрации какого реагента определялось. Очевидно, что в реакции

 

2 + О2 ––> 2Н2О

 

концентрации водорода, кислорода и воды изменяются в различной степени. Скорость химической реакции зависит от множества факторов: природы реагирующих веществ, их концентрации, температуры, природы растворителя и т.д.

 

Основной постулат химической кинетики ‒ закон действия масс

В основе химической кинетики лежит основной постулат химической кинетики: скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в некоторых степенях.

Т. е. для реакции аА + bВ + ... ––> продукты можно записать:

 

(2.1.3)

 

Коэффициент пропорциональности k есть константа скорости химической реакции. Константа скорости численно равна скорости реакции при концентрациях всех реагирующих веществ, равных 1 моль/л. Константа скорости зависит от природы реагирующих веществ, и от условий проведения реакции – температуры, катализатора и т.д.

Зависимость скорости реакции от концентраций реагирующих веществ (уравнение 2.1.3) определяется экспериментально и называется кинетическим уравнением химической реакции. Очевидно, что для того, чтобы записать кинетическое уравнение, необходимо экспериментально определить величину константы скорости и показателей степени при концентрациях реагирующих веществ. Показатель степени при концентрации каждого из реагирующих веществ в кинетическом уравнении химической реакции (в уравнении (2.1.3) соответственно x и y) есть частный порядок реакции по компонентам А и В соответственно. Сумма показателей степени в кинетическом уравнении химической реакции (2.1.3) представляет собой общий порядок реакции n



n = x + y +

 

Следует подчеркнуть, что порядок реакции определяется из экспериментальных данных и не связан в общем случае со стехиометрическими коэффициентами реагирующих веществ в уравнении реакции.

Вместе с тем, для элементарных реакций (т.е. реакций, идущих в одну стадию) показатели степени в кинетическом уравнении часто совпадают со стехиометрическими коэффициентами реагирующих веществ:

 

n= a+b+ … , и (2.1.4)

 

В химической кинетике принято классифицировать реакции по величине общего порядка реакции. Рассмотрим кинетические уравнения различных порядков.

 

Реакции нулевого порядка

 

Для реакций нулевого порядка кинетическое уравнение имеет следующий вид:

(2.1.5)

 

Скорость реакции нулевого порядка постоянна во времени и не зависит от концентраций реагирующих веществ. Это характерно для тех процессов, скорость которых меньше скорости доставки реагирующих веществ к месту поведения реакции. Часто это имеет место в гетерогенных реакциях, идущих на поверхности раздела фаз.

По нулевому порядку идут и реакции, скорость которых лимитируется подачей энергии, необходимой для активации реагирующих молекул (например, фотохимические реакции, где определяющим фактором служит, например, количество поглощенного света, а не концентрация вещества). Кроме того, часто в каталитических реакциях скорость определяется концентрацией катализатора (фермента) и не зависит от концентрации реагирующих веществ.

 

Реакции первого порядка

 

Рассмотрим зависимость от времени концентрации исходного вещества А для случая реакции первого порядка

 

А ––> В.

Реакции первого порядка характеризуются кинетическим уравнением вида

(2.1.6)

 

Уравнением первого порядка могут описываться скорости элементарных мономолекулярных реакций (изомеризация, термическое разложение и др.), а также реакции с более сложным механизмом, например, гидролиз сахарозы с образованием глюкозы и фруктозы. Эта реакция бимолекулярная, однако, из-за наличия большого избытка воды скорость зависит только от концентрации сахарозы.

Реакции второго порядка

 

Для реакций второго порядка кинетическое уравнение имеет следующий вид:

(2.1.7)

Либо

 

(2.1.8)

 

Примером реакций второго порядка являются образование и разложение йодистого водорода, т.е. прямая и обратная реакции в системе:

 

H2 + I2 ←→ 2 HI,

 

а также разложение диоксида азота

 

2 NO2 −−> N2 + 2 O2

 

Реакции третьего порядка

 

Для реакций третьего порядка:

 

(2.1.9)

 

В простейшем случае, когда

 

(2.1.10)

 

По третьему порядку идет, например, реакция окисления оксида азота до диоксида:

2 NО + O2 −−> 2 NO2

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.