Искусственное контрастирование органов Обратитесь вновь к рис. II.4. На нем легко различить изображения сердца и легких, так как они в разной степени поглощают излучение. Они обладают, как принято говорить в рентгенодиагностике, естественной контрастностью. Однако на снимке не различимы бронхи, поскольку они, как и легочная ткань, содержат воздух. Не видны также полости сердца, потому что они заполнены кровью, которая задерживает излучение в той же степени, что и сердечная мышца. Для того чтобы получить дифференцированное изображение тканей, примерно одинаково поглощающих излучение, применяют искусственное контрастирование. С этой целью в организм вводят вещества, которые поглощают рентгеновское излучение сильнее или, наоборот, слабее, чем мягкие ткани, и тем самым создают достаточный контраст с исследуемыми органами. Вещества, задерживающие больше излучения, чем мягкие ткани, называют рентгенопозитивными. Они созданы на основе тяжелых элементов — бария или йода. В качестве же рентгенонегативных контрастных веществ используют газы - закись азота, углекислый газ. Основные требования к рент-геноконтрастным веществам очевидны: создание высокой контрастности изображения, безвредность при введении в организм больного, быстрое выведение из организма. Существуют два принципиально различных способа контрастирования органов. Один из них заключается в прямом механическом введении контрастного вещества в полость органа — в пищевод, желудок, кишечник, слезные или слюнные протоки, желчные пути, полость матки, кровеносные сосуды или полости сердца. Второй способ контрастирования основан на способности некоторых органов поглощать из крови введенное в нее контрастное вещество, концентрировать и выделять его. Этот принцип — концентрации и выведения — используют при рентгенологическом исследовании мочевыделитель-ной системы и желчных путей. В рентгенологической практике в настоящее время применяют следующие контрастные средства. 1. Препараты сульфата бария (BaSOJ. Водная взвесь сульфата бария ~ основной препарат для исследования пищеварительного канала. Она нерастворима в воде и пищеварительных соках, безвредна. Применяют в виде суспензии в концентрации 1:1 или более высокой —-до 5:1. Для придания препарату дополнительных свойств (замедление оседания твердых частиц бария, повышение прилипаемости к слизистой оболочке) в водную взвесь добавляют химически активные вещества (танин, цитрат натрия, сорбит и др.), для увеличения вязкости — желатин, пищевую целлюлозу. Существуют готовые официнальные препараты сульфата бария, отвечающие всем перечисленным требованиям. 2. Йодсодержащие растворы органических соединений. Это большая груп па препаратов, представляющих собой главным образом производные не которых ароматических кислот — бензойной, адипиновой, фенилпропио- новой и др. Препараты используют для контрастирования кровеносных со судов и полостей сердца. К ним относятся, например, урографин, тразо- граф, триомбраст и др. Эти препараты выделяются мочевыводящей систе мой, поэтому могут быть использованы для исследования чашечно-лоха- ночного комплекса почек, мочеточников, мочевого пузыря. В последнее время появилось новое поколение йодсодержащих органических соединений — неионные (сначала мономеры — омнипак, ультравист, затем димеры — йодиксанол, йотролан). Их осмолярность значительно ниже, чем ионных, и приближается к осмолярности плазмы крови (300 моем). Вследствие этого они значительно менее токсичны, чем ионные мономеры. Ряд йодсодержащих препаратов улавливается из крови печенью и выводится с желчью, поэтому их применяют для контрастирования желчных путей. С целью контрастирования желчного пузыря применяют йодистые препараты, всасывающиеся в кишечнике (холевид). 3. Йодированные масла. Эти препараты представляют собой эмульсию йодистых соединений в растительных маслах (персиковом, маковом). Они завоевали популярность как средства, используемые при исследовании бронхов, лимфатических сосудов, полости матки, свищевых ходов. Особенно хороши ультражидкие йодированные масла (липоидол), которые характеризуются высокой контрастностью и мало раздражают ткани. Йодсодержащие препараты, особенно ионной группы, могут вызывать аллергические реакции и оказывать токсическое воздействие на организм. Общие аллергические проявления наблюдаются со стороны кожи и слизистых оболочек (конъюнктивит, ринит, крапивница, отек слизистой оболочки гортани, бронхов, трахеи), сердечно-сосудистой системы (снижение кровяного давления, коллапс), центральной нервной системы (судороги, иногда параличи), почек (нарушение вьщелительной функции). Указанные реакции обычно преходящи, но могут достигать высокой степени выраженности и даже привести к смертельному исходу. В связи с этим перед введением в кровь йодсодержащих препаратов, особенно высокоосмолярных из ионной группы, необходимо провести биологическую пробу: осторожно вливают внутривенно 1 мл рентгеноконтрастного препарата и выжидают 2—3 мин, внимательно наблюдая за состоянием больного. Лишь в случае отсутствия аллергической реакции вводят основную дозу, которая при разных исследованиях варьирует от 20 до 100 мл. При малейших признаках реакции на введение пробной дозы исследование прекращают. С большой осторожностью прибегают к рентгено-контрастным исследованиям у лиц с аллергическими заболеваниями: бронхиальной астмой, сенной лихорадкой, аллергическим назофаринги-том и др. В рентгеновском кабинете всегда хранятся средства для предотвращения и устранения аллергических и токсических реакций. Еще раз подчеркнем, что благодаря введению в клиническую практику контрастных препаратов неионной группы значительно уменьшились количество и выраженность неблагоприятных реакций. Однако их высокая стоимость пока сдерживает повсеместный переход только на эти рентгеноконтраст-ные вещества. 4. Газы (закись азота, углекислый газ, обычный воздух). Для введения в кровь можно применять только углекислый газ вследствие его высокой растворимости. При введении в полости тела и клетчаточные пространства также во избежание газовой эмболии используют закись азота. В пищеварительный канал допустимо вводить обычный воздух. В некоторых случаях рентгенологическое исследование проводят с двумя рентгеноконтрастными веществами — рентгенопозитивным и рентгено-негативным. Это так называемое двойное контрастирование. Чаще таким приемом пользуются в гастроэнтерологии, когда при исследовании пищеварительной трубки одновременно вводят сульфат бария и воздух. Рентгенография Рентгенография (рентгеновская съемка) — способ рентгенологического исследования, при котором фиксированное рентгеновское изображение объекта получают на твердом носителе, в подавляющем большинстве случаев на рентгеновской пленке. В цифровых рентгеновских аппаратах это изображение может быть зафиксировано на бумаге, в магнитной или магнитно-оптической памяти, получено на экране дисплея.  Рис. 11.5. Подготовка к рентгенографии предплечья. Пленочную рентгенографию выполняют либо на универсальном рентгеновском аппарате, либо на специальном штативе, предназначенном только для этого вида исследования. Исследуемая часть тела располагается между рентгеновским излучателем и кассетой (рис. И.5). Внутренние стенки кассеты покрыты усиливающими экранами, между которыми и помещается рентгеновская пленка. Усиливающие экраны содержат люминофор, который под действием рентгеновского излучения светится и, таким образом воздействуя на пленку, усиливает его фотохимическое действие. Основное назначение усиливающих экранов — уменьшить экспозицию, а значит, и радиационное облучение пациента. В зависимости от назначения усиливающие экраны делят на стандартные, мелкозернистые (у них мелкое зерно люминофора, пониженная светоотдача, но очень высокое пространственное разрешение), которые применяют в остеологии, и скоростные (с крупными зернами люминофора, высокой светоотдачей, но пониженным разрешением), которые используют при проведении исследования у детей и быстродвижущихся объектов, например сердца. Исследуемую часть тела помещают максимально близко к кассете, чтобы уменьшить проекционное искажение (в основном увеличение), которое возникает из-за расходящегося характера пучка рентгеновских лучей. Кроме того такое расположение обеспечивает необходимую резкость изображения. Излучатель устанавливают так, чтобы центральный пучок проходил через центр снимаемой части тела и был перпендикулярен пленке. В некоторых случаях, например при исследовании височной кости, применяют наклонное положение излучателя. Рентгенографию можно выполнять в вертикальном, горизонтальном или наклонном положении больного, а также в положении на боку. Съемка в разных положениях позволяет судить о смещаемости органов и выявлять некоторые важные диагностические признаки, например растекание жидкости в плевральной полости или наличие уровней жидкости в петлях кишечника. Снимок части тела (голова, таз и др.) или целого органа (легкие, желудок) называют обзорным. Снимки с изображением интересующей врача части органа в проекции, оптимальной для исследования той или иной детали, именуют прицельными. Их нередко производит сам врач под контролем просвечивания. Снимки могут быть одиночными или серийными. Серия может состоять из 2—3 рентгенограмм, на которых зафиксированы разные состояния органа (например, перистальтика желудка). Однако чаще под серийной рентгенографией понимают изготовление нескольких рентгенограмм в течение одного исследования и обычно за короткий промежуток времени. Например, при арте-ри о граф и и (контрастное исследование сосудов) с помощью специального устройства — сериографа — производят до 6—8 снимков в секунду. Из вариантов рентгенографии заслуживает упоминания съемка с прямым увеличением изображения, которого обычно достигают, отодвигая рентгеновскую кассету от объекта съемки на 20—30 см. В результате этого на рентгенограмме получается изображение мелких деталей, не различимых на обычных снимках. Эту технологию можно использовать только при наличии специальных трубок, в которых фокусное пятно имеет очень небольшие размеры — порядка 0,1—0,3 мм2. Для изучения костно-суставной системы оптимальным считается увеличение в 5—7 раз (рис. II.6). На рентгенограммах можно получить изображение любой части тела. Некоторые органы хорошо различимы на снимках благодаря естественной контрастности (кости, сердце, легкие). Другие органы достаточно четко отображаются только после их искусственного контрастирования (бронхи, сосуды, желчные протоки, полости сердца, желудок, кишечник). В любом случае рентгенологическая картина формируется из светлых и темных участков. Почернение рентгеновской пленки, как и фотопленки, происходит вследствие восстановления металлического серебра в ее экспонированном эмульсионном слое. Для этого пленку подвергают химической и физической обработке: проявляют, фиксируют, промывают, сушат. В современных рентгеновских кабинетах весь процесс обработки пленки автоматизирован благодаря наличию проявочных машин. Применение микропроцессорной техники, высокой температуры и быстродействующих химических реактивов позволяет уменьшить время получения рентгенограммы до 1— 1,5 мин.  Рис. Н.б. Рентгенограмма костей запястья с увеличением изображения. Следует помнить, что рентгеновский снимок является негативом по отношению к изображению, видимому на флюоресцентном экране при просвечивании, поэтому прозрачные для рентгеновских лучей участки тела на рентгенограммах получаются темными («затемнения»), а более плотные -— светлыми («просветления»)! 1. Однако главная особенность рентгенограммы заключается в другом. Каждый луч при прохождении через тело человека пересекает не одну точку, а огромное количество точек, расположенных как на поверхности, так и в глубине тканей. Следовательно, каждой точке на снимке соответствует множество действительных точек объекта, которые проецируются друг на друга, поэтому рентгеновское изображение является суммационным, шюскост- По существующим правилам все рентгенограммы в учебнике воспроизводятся в позитивном отображении, идентичном изображению на флюоресцентном экране. Рис П.7. Различные виды суммации (1-3) и вычитания (4) теней на рентгенограмме. ным. На рис. II.7 показано, что это обстоятельство приводит к потере изображения многих элементов объекта, поскольку изображение одних деталей накладывается на тень других. Из этого вытекает основное правило рентгенологического исследования: рентгенограммы любой части тела (органа) должны быть произведены как минимум в двух взаимно перпендикулярных проекциях — прямой и боковой. В дополнение к ним могут понадобиться снимки в косых и аксиальных (осевых) проекциях. Рентгенограммы изучают в соответствии с общей схемой анализа лучевых изображений1. Рентгенографию применяют повсеместно. Она может быть выполнена во всех лечебных учреждениях, проста и необременительна для пациента. Снимки можно производить в стационарном рентгеновском кабинете, палате, операционной, реанимационном отделении. При правильном выборе технических условий на снимке отображаются мелкие анатомические детали. Рентгенограмма является документом, который можно хранить продолжительное время, использовать для сопоставления с повторными рентгенограммами и предъявлять для обсуждения неограниченному числу специалистов. Показания к рентгенографии весьма широки, но в каждом конкретном случае должны быть обоснованы, так как рентгенологическое исследование сопряжено с лучевой нагрузкой. Относительными противопоказаниями служат крайне тяжелое состояние или сильное возбуждение больного, а также острые состояния, при которых требуется экстренная хирургическая помощь (например, кровотечение из крупного сосуда, открытый пневмоторакс). В качестве приемника рентгеновского изображения ранее применяли селеновые пластины, которые перед экспонированием заряжали на специальных аппаратах. Затем изображение переносили на писчую бумагу. Метод получил название электрорентгенографии. Однако в дальнейшем этот метод себя не оправдал из-за большого числа артефактов, высокой лучевой нагрузки и искажения рентгеновских изображений. 1 Подробно см.: Линденбратен ЛЛ Методика изучения рентгеновских снимков.— М.: Медицина, 1971. 6* Гимн рентгенограмме Она тонка, стройна, ее скелет Из хрупких кальция соединений Лучей катодных всепроникновеньем Воссоздан здесь. Рентгеновский портрет Рисует гармоничность позвонков, Стряхнувших эпидермиса покров. И в дымке очертаний плоти слабой Я вижу сердца трепетный овал; Твою улыбку взор дорисовал, И я шепчу: «Любимая, я раб твой. О, жемчуг рта! О, полутеней гамма! Любовь и страсть моя, рентгенограмма». Лоренс Рассел Прогресс компьютерной техники открыл возможность разработки ди-гитальных (цифровых) способов получения рентгеновского изображения (от англ. digit — цифра). Для этих способов характерно представление рентгеновского изображения в цифровом варианте. Такие изображения формируются с помощью различных устройств. Соответственно различают следующие системы цифровой рентгенографии: 1) электронно-оптическая цифровая рентгенография; 2) сканирующая цифровая рентгенография; 3) цифровая люминесцентная рентгенография; 4) цифровая селеновая или силиконовая рентгенография (прямая цифровая рентгенография). При электронно-оптической цифровой рентгенографии рентгеновское изображение, полученное в телевизионной камере, после усиления поступает на аналого-цифровой преобразователь (рис. II.8). Все электрические сигналы, несущие информацию об исследуемом объекте, превращаются в череду цифр. Иными словами, создается цифровой образ объекта. Цифровая информация поступает затем в компьютер, где обрабатывается по заранее составленным программам. Программу выбирает врач, исходя из задач исследования. С помощью компьютера можно улучшить качество изображения, повысить его контрастность, очистить от помех, выделить интересующие врача детали или контуры. В системах, в которых использована техника сканирования объекта, через него пропускают движущийся узкий пучок рентгеновских лучей, т.е. последовательно «просвечивают» все его отделы. Прошедшее через объект излучение регистрируется детектором и преобразуется в электрический сигнал, который после оцифровки в аналого-цифровом преобразователе передается на компьютер для последующей обработки. Быстро развивается цифровая люминесцентная рентгенография, при которой пространственный рентгеновский образ воспринимается «запоминающей» люминесцентной пластиной, способной сохранять скрытое в ней изображение в течение нескольких минут. Затем эта пластина сканируется специальным лазерным устройством, а возникающий при этом световой поток преобразуется в цифровой сигнал. Особенно привлекает внимание прямая цифровая рентгенография, основанная на прямом преобразовании энергии рентгеновских фотонов в свободные электроны. Подобная трансформация происходит при действии рентгеновского пучка, прошедшего через объект, на пластины из аморфного селена или аморфного полукристаллического силикона. По ряду сообра-84 Телевизионная система высокого разрешения 1249 строк) |  Генератор
Излучатель Цифровая Цифровая ^обработка изображений Мультиформатная камера Рис. П.8. Электронно-оптическая цифровая система для рентгенографии и рентгеноскопии. жений такой метод рентгенографии пока используют только для исследования грудной клетки. Независимо от вида цифровой рентгенографии окончательное изображение при ней сохраняется на различного рода магнитных носителях (дискеты, жесткие диски, магнитные ленты) либо в виде твердой копии (воспроизводится с помощью мультиформатной камеры на специальной фотопленке), либо с помощью лазерного принтера на писчей бумаге. К достоинствам цифровой рентгенографии относятся высокое качество изображения, пониженная лучевая нагрузка и возможность сохранять изображения на магнитных носителях со всеми вытекающими из этого последствиями: удобство хранения, возможность создания упорядоченных архивов с оперативным доступом к данным и передачи изображения на расстояния — как внутри больницы, так и за ее пределы. Знаменитого математика Давида Гильберта (1862— 1943) спросили об одном из его бывших учеников. — Ах, этот-то?—вспомнил Гильберт.— Он стал поэтом Для математики у него было слишком мало воображения. (Физики шутят.— М.: Мир, 1966) Рентгеноскопия Рентгеноскопия (рентгеновское просвечивание) — метод рентгенологического исследования, при котором изображение объекта получают на светящемся (флюоресцентном) экране. Экран представляет собой картон, покрытый особым химическим составом, который под влиянием рентгеновского излучения начинает светиться. Интенсивность свечения в каждой точке экрана пропорциональна количеству попавших на него рентгеновских квантов. Со стороны, обращенной к врачу, экран покрыт свинцовым стеклом, предохраняющим врача от прямого воздействия рентгеновского излучения. Флюоресцентный экран светится слабо, поэтому рентгеноскопию выполняют в затемненном помещении. Врач должен в течение 10—15 мин привыкать (адаптироваться) к темноте, чтобы различить малоинтенсивное изображение. И все же, несмотря на сколь угодно длительную адаптацию, изображение на светящемся экране различимо плохо, мелкие детали его не видны, лучевая нагрузка при таком исследовании довольно велика. В качестве усовершенствованного метода рентгеноскопии применяют рентгенотелевизионное просвечивание. Его выполняют с помощью усилителя рентгеновского изображения (УРИ), в состав которого входят рентгеновский электронно-оптический преобразователь (РЭОП) и замкнутая телевизионная система. РЭОП представляет собой вакуумную трубку, внутри которой с одной стороны расположен рентгеновский флюоресцирующий экран, а с противоположной — катодно-люминесцирующий экран, между ними — электрическое ускоряющее поле с разностью потенциалов около 25 кВ. Световой образ, возникающий при просвечивании на флюоресцентном экране, на фотокатоде превращается в поток электронов. Под воздействием ускоряющего поля и в результате фокусировки (повышения плотности потока) энергия электронов значительно — в несколько тысяч раз — возрастает. Попадая на катодно-люминесцентный экран, электронный поток создает на нем видимое, аналогичное исходному, но очень яркое изображение, которое через систему зеркал и линз передается на телевизионную трубку — видикон. Возникающие в ней электрические сигналы поступают в блок телевизионного канала, а затем — на экран дисплея. При необходимости изображение можно фиксировать с помощью видеомагнитофона. Таким образом, в УРИ осуществляется такая цепочка преобразования образа исследуемого объекта: рентгеновский — световой — электронный (на этом этапе происходит усиление сигнала) — вновь световой — электронный (здесь возможно исправление некоторых характеристик образа) — вновь световой. Рентгеновское изображение на дисплее, как и обычное телевизионное изображение, можно рассматривать при обычном видимом свете. Благодаря УРИ рентгенология совершила скачок из царства темноты в царство света. Как остроумно заметил один ученый, «темное прошлое рентгенологии позади». Рентгенотелевизионное просвечивание не требует темновой адаптации врача. Лучевая нагрузка на персонал и пациента при его проведении значительно меньше, чем при обычной рентгеноскопии. По телевизионному каналу изображение может быть передано на другие мониторы (в комнату управления, в учебные комнаты). Телевизионная техника обеспечивает возможность записи всех этапов исследования, в том числе движений органов. С помощью зеркал и линз рентгеновское изображение из рентгеновского электронно-оптического преобразователя может быть введено в кинокамеру. Такое исследование носит название рент-генокинематографии (рис. II.9). Это изображение может быть также направлено на фотокамеру, которая позволяет выполнить серию малоформатных (размером 10x10 см) рентгенограмм. Наконец, рентгенотелевизионный тракт дает возможность ввести дополнительный модуль, оцифровывающий изображение (аналого-цифровой преобразователь), и выполнить серийную цифровую рентгенографию, которая уже рассмотрена ранее, а также цифровую рентгеноскопию, при которой еще больше снижается лучевая нагрузка, улучшается качество изображения и, кроме того, имеется возможность ввести изображение в компьютер для последующей обработки. Следует отметить один принципиально важный момент. В настоящее время рентгеновских аппаратов без УРИ уже не выпускают, и применение так называемой обычной рентгеноскопии, т.е. исследование больного с помощью только светящегося в темноте экрана, допустимо лишь в исключительных условиях. Любому рентгеноскопическому исследованию, как с УРИ, так и без него, свойствен ряд недостатков, из-за которых сужается сфера его применения. Во-первых, при этом исследовании, несмотря на ряд рассмотренных ранее усовершенствований, лучевая нагрузка остается достаточно высокой, намного выше, чем при рентгенографии. Во-вторых, пространственное разрешение метода, т.е. возможность выявлять мелкие детали в рентгенологической картине, довольно низкое. Вследствие этого ряд патологических состояний легких может остаться незамеченным, например милиарный туберкулез или карциноматоз легких, лимфангит, некоторые пылевые поражения и др. В связи с изложенным использование рентгеноскопии как проверочного (профилактического) исследования запрещено официальным предписанием Правительства РФ. В настоящее время круг решаемых в диагностике задач, стоящих перед рентгеноскопией, может быть сведен к следующему: 1) контроль над заполнением органов пациента контрастным веществом, например при исследовании пищеварительного канала; 2) контроль над проведением инструментария (катетеры, иглы и др.) при выполнении инвазивных рентгенологических процедур, например катетеризации сердца и сосудов; 3) исследование функциональной активности органов или выявление функциональных симптомов заболевания (например, ограничения подвижности диафрагмы) у больных, которым по каким-либо причинам ультразвуковое исследование не может быть выполнено. Флюорография Флюорография — метод рентгенологического исследования, заключающийся в фотографировании изображения с флюоресцентного рентгеновского экрана (что применяется чаще), экрана электронно-оптического преобразователя или систем, предназначенных для последующей оцифровки изображений, на фотопленку небольшого формата — обычно 110x110 мм, 100 х 100 мм или, что менее желательно, 70 х 70 мм. Важнейшим качеством флюорографии, проистекающим из низкой стоимости рентгенограмм малого формата, является возможность проводить с ее помощью массовые проверочные (профилактические) исследования. Это и определило место флюорографии в рентгенодиагностике, а если брать шире — то и во всей медицине. При наиболее распространенном способе флюорографии уменьшенные рентгеновские снимки получают на специальном рентгеновском аппарате — флюорографе. В этом аппарате имеются флюоресцентный экран и механизм автоматического перемещения рулонной пленки. Фотографирование изображения осуществляется с помощью фотокамеры на рулонную ленту с получением кадров указанных выше размеров (рис. 11.10). При другом способе флюорографии, уже упомянутом в начале настоя-щего раздела, фотосъемку производят на пленку того же формата, но с экрана УРИ (такой метод регистрации изображения иногда называют УРИ-флюорографией). Методика особенно показана при исследовании пищевода, желудка и кишечника, так как обеспечивает быстрый переход от просвечивания к выполнению рентгеновских снимков, причем большими сериями. Шагом вперед явилась разработка цифровой флюорографии. В цифровом флюорографе в отличие от экранно-пленочной техники (с УРИ или без него) энергия рентгеновских фотонов, прошедших через объект исследования (тело человека), воспринимается одной из систем для оцифровки изображения (как в цифровой рентгенографии). Затем с помощью лазерного принтера получают изображение на обычной писчей бумаге. Преимущества цифровой флюорографии очевидны: низкая стоимость получения фотокад-88 ра, пониженная — в 20 раз — лучевая нагрузка на пациента, в связи с чем такую флюорографию часто называют низкодозовой. Рис. П. 10. Принцип флюорографии. | В нашей стране флюорография в качестве метода рентгенологического исследования органов грудной полости сложилась как составная часть комплексной программы раннего выявления туберкулеза легких. Естественно, что попутно обнаруживали и другие легочные заболевания, в первую очередь онкологические. Однако вследствие невысокой чувствительности и специфичности метода было много противников его использования. Так, за рубежом пошли по другому пути — пути развития альтернативных методов диагностики туберкулеза, в частности цитологического исследования мокроты. К недостаткам флюорографии как массового проверочного исследования следует отнести и определенную лучевую нагрузку на популяцию страны в целом (не путать с радиобиологическим воздействием на отдельного индивидуума: оно невелико и никакой опасности для здоровья обследуемого не представляет!), а также громоздкость и достаточно высокую стоимость флюорографических исследований в масштабах страны в целом. И все же, несмотря на ряд присущих флюорографии недостатков, в настоящее время в нашей стране она является основным методом раннего распознавания туберкулеза (а также рака) легких. В соответствии с существующими положениями и регламентациями флюорографию проводят не поголовно, как было раньше, а дифференцированно, у ограниченной группы лиц из группы высокого риска развития легочных заболеваний и с учетом местных условий, в первую очередь эпидемиологической обстановки по туберкулезу, но обязательно у лиц, достигших 15-летнего возраста. У всех лиц, относимых к так называемой декретированной группе (работники лечебных учреждений, детских дошкольных учреждений и школ, общепита и др.), флюорографию проводят обязательно не реже одного раза в год. Томография Томография (от греч. tomos — слой) — метод послойного рентгенологического исследования. На обычной рентгенограмме получается суммационное изображение всей толщи исследуемой части тела. Изображение одних анатомических структур частично или полностью накладывается на изображение других. Вследствие этого теряется очень много важных структурных элементов органов. Томография служит для получения изолированного изображения структур, расположенных в одной плоскости, т.е. как бы расчленения суммационного изображения на составляющие его изображения отдельных слоев объекта.  Рис. 11.11. Принцип традиционной (линейной) томографии.  Рве.П.12. Штатив для линейной томографии. 90  а — рентгенограмма, б — томограмма. Эффект томографии достигается благодаря непрерывному движению во время съемки двух из трех компонентов рентгеновской системы излучатель—пациент—пленка. Чаще всего перемещаются излучатель и пленка, в то время как пациент остается неподвижным. При этом излучатель и пленка двигаются по дуге, прямой линии или более сложной траектории, но обязательно в противоположных направлениях (рис. 11.11). При таком перемещении изображение большинства деталей на рентгенограмме оказывается нечетким, размазанным, а резким получается изображение только тех образований, которые находятся на уровне центра вращения системы излучатель—пленка. Конструктивно томографы выполняют в виде дополнительных штативов (рис. 11.12) либо специального приспособления к универсальному поворотному штативу. Если на томографе изменить уровень центра вращения системы излучатель—пленка, то изменится уровень выделяемого слоя. Толщина выбираемого слоя зависит от амплитуды движения упомянутой выше системы: чем она больше, тем тоньше будет томографический слой. Обычная величина этого угла от 20 до 50°. Если же выбирают очень малый угол перемещения, порядка 3—5°, то получают изображение толстого слоя, по существу целой, зоны. Этот вариант томографии получил название зоногра-фии1 (не путать с сонографией — методом ультразвукового исследования). Показания к томографии достаточно широки, особенно в учреждениях, в которых нет компьютерного томографа. Наиболее широкое распространение томография получила в пульмонологии. На томограммах получают изображение трахеи и крупных бронхов, не прибегая к их искусственному контрастированию. Томография легких очень ценна для выявления полостей распада на участках инфильтрации или в опухолях (рис. 11.13), а также i Подробнее см.: Королюк И. П. Зонография легких.— М.: Медицина, 1984. для обнаружения гиперплазии внутригрудных лимфатических узлов. Она также дает возможность изучить структуру околоносовых пазух, гортани, получить изображение отдельных деталей такого сложного объекта, каким является позвоночник. Описанное выше послойное рентгенологическое исследование проводят без применения компьютеров. Этот метод называют линейной, или конвенциональной, томографией. Однако в лучевой диагностике существует ряд методик послойной визуализации органов с помощью компьютерных технологий. Об одном из них, компьютерной томографии, пойдет речь в следующем разделе. Компьютерная томография Мы живем в эпоху, когда расстояние от самых безумных фантазий до совершенно реальной действительности сокращается с невероятной быстротой. М. Горький Компьютерная томография — это послойное рентгенологическое исследование, основанное на компьютерной реконструкции изображения, получаемого при круговом сканировании объекта (он англ. scan — бегло просматривать) узким пучком рентгеновского излучения. Компьютерная томография (КТ) буквально «взорвала» не только лучевую, но и вообще медицинскую диагностику. Впервые за всю историю развития медицины у врача появилась уникальная возможность изучить у живого человека неинвазивным методом анатомические структуры внутренних органов диаметром всего несколько миллиметров. Идея компьютерной томографии родилась в далекой Южно-Африканской Республике у физика А. Кормака. В Кейптаунской больнице Хроте Схюр его поразило несовершенство технологии исследования головного мозга. Он рассчитал взаимодействие узкого пучка рентгеновского излучения с веществом мозга и в 1963 г. опубликовал статью о возможности компьютерной реконструкции изображения мозга. Спустя 7 лет этим вопросом занялась группа инженеров английской фирмы электромузыкальных инструментов во главе с Г. Хаунсфилдом. Время сканирования первого объекта (мозг, консервированный в формалине) на созданной ими экспериментальной установке составило 9 ч. Как робки были первые шаги КТ и далеки первые результаты исследований от нынешних блестящих успехов! Однако мы не случайно рассказываем об истории создания нового метода. Для молодых исследователей она поучительна и дерзким замыслом первых исследователей, и не меньшей смелостью фирмы, предоставившей средства для создания прибора, весьма далекого от ее основной продукции. Уже в 1972 г. была произведена первая томограмма женщине с опухолевым поражением мозга. 19 апреля 1972 г. на конгрессе Британского радиологического института Г. Хаунсфилд и врач Дж.Амброус выступили с сенсационным сообщением «Рентгенология проникает в мозг». А в 1979 г. А. Кормаку и Г. Хаунсфилду была присуждена Нобелевская премия. В настоящее время в мире функционируют десятки тысяч компьютерных томографов, что соизмеримо с числом классических рентгеновских аппаратов.  | Рис. П. 14. Рентгеновский компьютерный томограф.  Рис. 11.15. Принцип компьютерной томографии. Компьютерный томограф представляет собой чрезвычайно сложное устройство, при создании которого были использованы наиболее прогрессивные компьютерные, электронные и механические технологии (рис. П. 14). Схема получения компьютерных томограмм представлена на рис. 11.15. Узкий пучок рентгеновского излучения сканирует человеческое тело по окружности. Проходя через ткани, излучение ослабляется соответственно плотности и атомному составу этих тканей. По другую сторону от пациента установлена круговая система датчиков рентгеновского излучения, каждый из которых (а их количество может достигать нескольких тысяч) преобразует энергию излучения в электрические сигналы. После усиления эти сигналы преобразуются в цифровой код, который поступает в память компьютера. Зафиксированные сигналы отражают степень ослабления пучка рентгеновских лучей (и, следовательно, степень поглощения излучения) в каком-либо одном направлении. Вращаясь вокруг пациента, рентгеновский излучатель «просматривает» его тело в разных ракурсах, в общей сложности под углом 360°. К концу  Рнс. П. 16. Компьютерная томограмма брюшной полости. Метастазы злокачественной опухоли в печени (указаны стрелками). вращения излучателя в памяти компьютера оказываются зафиксированными все сигналы от всех датчиков. Продолжительность вращения излучателя в современных томографах очень небольшая, всего 1—3 с, что позволяет изучать движущиеся объекты. При использовании стандартных программ компьютер реконструирует внутреннюю структуру объекта. В результате этого получается изображение тонкого слоя изучаемого органа, обычно порядка нескольких миллиметров, которое выводится на дисплей, и врач обрабатывает его применительно к поставленной перед ним задаче: может масштабировать изображение (увеличивать и уменьшать), выделять интересующие его области (зоны интереса), определять размеры органа, число или характер патологических образований (рис. 11.16). Попутно определяют плотность ткани на отдельных участках, которую измеряют в условных единицах — единицах Хаунсфилда (HU). За нулевую отметку принята плотность воды. Плотность кости составляет +1000 HU, плотность воздуха равна —1000 HU. Все остальные ткани человеческого тела занимают промежуточное положение (обычно от 0 до 200—300 HU). Естественно, такой диапазон плотностей отобразить ни на дисплее, ни на фотопленке нельзя, поэтому врач выбирает ограниченный диапазон на шкале Хаунсфилда — «окно», размеры которого обычно не превышают нескольких десятков единиц Хаунсфилда. Параметры окна (ширина и расположение на всей шкале Хаунсфилда) всегда обозначают на компьютерных томограммах. После такой обработки изображение помещают в долговременную память компьютера или сбрасывают на твердый носитель — фотопленку. Добавим, что при компьютерной томографии выявляются самые  Рис. П.17. Спиральная компьютерная томограмма (ангиограмма). А — расширенная брюшная аорта. Стрелками показаны почечные артерии. К левой почке идет добавочная артерия (указана изогнутой стрелкой).  Рис. П. 18. Компьютерная томограмма поясничных позвонков (трехмерная реконструкция изображения).  Рис. II. 19. Компьютерная томограмма (виртуальная эндоскопия). Наружный вид трахеи, бронхов и увеличенных лимфатических узлов. незначительные перепады плотности, около 0,4—0,5 %, тогда как обычная рентгенограмма может отобразить плотности ой градиент только в 15—20 %. Обычно при компьютерной томографии не ограничиваются получением одного слоя. Для уверенного распознавания поражения необходимо несколько срезов, как правило, 5—10, их выполняют на расстоянии 5— 10 мм друг от друга. Для ориентации в расположении выделяемых слоев относительно тела человека на этом же аппарате производят обзорный цифровой снимок изучаемой области — рентгенотопограмму, на которой и отображаются выделяемые при дальнейшем исследовании уровни томограмм. В настоящее время сконструированы компьютерные томографы, в которых в качестве источника проникающего излучения вместо рентгеновского излучателя используют вакуумные электронные пушки, испускающие пучок быстрых электронов. Сфера применения таких электронно-лучевых компьютерных томографов пока ограничена в основном кардиологией.  Рис. 11.20. Компьютерная томограмма (виртуальная эндоскопия, выполненная у того же больного — см. рис. 11.19). Изображение бифуркации трахеи. Эндоброн-хиальный рак правого главного бронха. В последние годы бурно развивается так называемая спиральная томография, при которой излучатель движется по спирали по отношению к телу пациента и захватывает, таким образом, за короткий промежуток времени, измеряемый несколькими секундами, определенный объем тела, который в последующем может быть представлен отдельными дискретными слоями. Спиральная томография инициировала создание новых, чрезвычайно перспективных способов визуализации — компьютерной ангиографии (рис. П. 17), трехмерного (объемного) изображения органов (рис. 11.18) и, наконец, так называемой виртуальной эндоскопии (рис. 11.19; 11.20), которая стала венцом современной медицинской визуализации. Специальной подготовки больного к КТ органов головы, шеи, грудной полости и конечностей не требуется. При исследовании аорты, нижней полой вены, печени, селезенки, почек больному рекомендуется ограничиться легким завтраком. На исследование желчного пузыря пациент должен явиться натощак. Перед КТ поджелудочной железы и печени необходимо принять меры для уменьшения метеоризма. Для более четкого дифференцирования желудка, и кишечника при КТ брюшной полости их контрастируют путем дробного приема внутрь пациентом до исследования около 500 мл 2,5 % раствора водорастворимого йодистого контрастного вещества. Следует также учесть, что если накануне проведения КТ больному выполняли рентгенологическое исследование желудка или кишечника, то  Рис. 11.21. Методика «усиления» при компьютерной томографии. а — томограмма брюшной полости до введения контрастного вещества; б — после внутривенного введения рентгеноконтрастного вещества: усиление тени аорты, сосудов и почек. скопившийся в них барий будет создавать артефакты на изображении. В связи с этим не следует назначать КТ до полного опорожнения пищеварительного канала от этого контрастного вещества. Разработана дополнительная методика выполнения КТ — усиленная КТ (рис. 11.21). Она заключается в проведении томографии после внутривенного введения больному водорастворимого контрастного вещества. Этот прием способствует увеличению поглощения рентгеновского излучения в связи с появлением контрастного раствора в сосудистой сис- теме и паренхиме органа. При этом, с одной стороны, повышается контрастность изображения, а с другой - выделяются сильно васкуля-ризованные образования, например сосудистые опухоли, метастазы некоторых опухолей. Естественно, на фоне усиленного теневого изображения паренхимы органа в ней лучше выявляются малососудистые или вовсе бессосудистые зоны (кисты, опухоли). Некоторые модели компьютерных томографов снабжены кардиосинхро-низаторами. Они включают излучатель в точно заданные моменты времени—в систолу и диастолу. Полученные в результате такого исследования поперечные срезы сердца позволяют визуально оценить состояние сердца в систолу и диастолу, провести расчет объема камер сердца и фракции выброса, проанализировать показатели общей и регионарной сократительной функции миокарда. Значение КТ не ограничивается ее использованием в диагностике заболеваний. Под контролем КТ производят пункции и прицельную биопсию различных органов и патологических очагов. КТ играет важную роль в контроле эффективности консервативного и хирургического лечения больных. Наконец, КТ является точным методом определения локализации опухолевых поражений, что используют для наводки источника радиоактивного излучения на очаг при проведении лучевой терапии злокачественных новообразований. Ангиография На обычных рентгенограммах не получается изображение артерий, вен и лимфатических сосудов, поскольку они поглощают рентгеновское излучение так же, как окружающие их ткани. Исключением являются артерии и вены легких, которые вырисовываются как ветвящиеся темные полоски на фоне светлых легочных полей. Кроме того, у больных атеросклерозом, преимущественно пожилого и старческого возраста, наблюдается отложение извести в стенках сосудов, и эти известковые бляшки хорошо видны на снимках. Ангиографией называют рентгенологическое исследование кровеносных сосудов, производимое с применением контрастных веществ. Для искусственного контрастирования в кровяное и лимфатическое русло вводят раствор органического соединения йода, предназначенного для этой цели. В зависимости от того, какую часть сосудистой системы контрастируют, различают артериографию, венографию (флебографию) и лимфографию. Ангиографию выполняют только после общеклинического обследования и лишь в тех случаях, когда с помощью неинвазивных методов не удается диагностировать болезнь и предполагается, что на основании картины сосудов или изучения кровотока можно выявить поражение собственно сосудов или их изменения при заболеваниях других органов. Однако нужно помнить, что ангиография — инвазивное исследование, связанное с возможностью осложнений и с довольно значительной лучевой нагрузкой. Основные задачи ангиографии ясны из изложенного ранее. Ее применяют для исследования гемодинамики и выявления собственно сосудистой патологии, диагностики повреждений и пороков развития органов, распознавания воспалительных, дистрофических и опухолевых поражений, вызывающих нарушение функции и морфологии сосудов. Ангиография является необходимым этапом при проведении эндоваскулярных операций (см. далее). Противопоказаниями к ангиографии служат крайне тяжелое состояние больного, острые инфекционные, воспалительные и психические заболевания, выраженная сердечная, печеночная и почечная недостаточность, повышенная чувствительность к препаратам йода. Возможность идиосинкразии к йоду выясняют во время опроса больного до исследования, а также путем проведения пробы на чувствительность к йодистому препарату, который собираются использовать. Для этого больному вводят внутривенно 1—2 мл контрастного вещества. Признаками аллергической реакции считают головную боль, тошноту, кожный зуд, крапивницу, конъюнктивит, ринит, нарушение сердечного ритма. Перед исследованием врач должен разъяснить пациенту необходимость и характер процедуры и получить его согласие на ее проведение. Вечером накануне ангиографии назначают транквилизаторы. Утром отменяют завтрак. В области пункции выбривают волосы. За 30 мин до исследования выполняют премедикацию (антигистаминные препараты, транквилизаторы, анальгетики). Артериографию производят путем пункции сосуда или его катетеризации. Пункцию применяют при исследовании сонных артерий, артерий и вен нижних конечностей, брюшной аорты и ее крупных ветвей. Однако основным способом ангиографии в настоящее время является, безусловно, катетеризация сосуда, которую выполняют по методике, разработанной шведским враном Сельдингером. Излюбленным местом для катетеризации служит область бедренной артерии. Больного укладывают на спину. Операционное поле обрабатывают и отграничивают стерильными простынями. Прощупывают пульсирующую бедренную артерию. После местной паравазальной анестезии 0,5 % раствором новокаина делают разрез кожи длиной 0,3—0,4 см. Из него тупым путем прокладывают узкий ход к артерии. В проделанный ход с небольшим наклоном вводят специальную иглу с широким просветом. Ею прокалыва-ют стенку артерии, после чего колющий стилет удаляют. Подтягивая иглу, локализуют ее конец в просвете артерии. В этот момент из павильона иглы появляется сильная струя крови. Через иглу в артерию вводят металлический проводник, который затем продвигают во внутреннюю и общую подвздошную артерии и аорту до избранного уровня. Иглу удаляют, а по проводнику в необходимую точку артериальной системы вводят рентгеноконт-растный катетер. За его продвижением наблюдают на дисплее. После удаления проводника свободный (наружный) конец катетера присоединяют к адаптеру и катетер сразу же промывают изотоническим раствором натрия хлорида с гепарином.  Рис. 11.22. Рентгенооперационная для проведения ангиографии и внутрисосудис-тых вмешательств. Все манипуляции при ангиографии осуществляют под контролем рентге-нотелевидения. Участники катетеризации работают в защитных фартуках, поверх которых надеты стерильные халаты. В процессе ангиографии ведут постоянное наблюдение за состоянием больного (рис. 11.22). Через катетер в исследуемую артерию автоматическим шприцем (инъ-ектором) под давлением вводят контрастное вещество. В тот же момент начинается скоростная рентгеновская съемка. Бе программа — число и время выполнения снимков — установлена на пульте управления аппаратом. Снимки немедленно проявляют. Убедившись в успехе исследования, катетер удаляют. Место пункции прижимают на 8—10 мин для остановки кровотечения. На область пункции на сутки накладывают давящую повязку. Больному на тот же срок предписывается постельный режим. Спустя сутки повязку заменяют асептической наклейкой. За состоянием больного постоянно следит лечащий врач. Обязательны измерение температуры тела и осмотр места оперативного вмешательства. Наиболее частое осложнение ангиографии — развитие гематомы в области катетеризации, где появляется припухлость. Ее лечат консервативно. Тяжелое, но, к счастью, редкое осложнение — тромбоэмболия периферической артерии, о возникновении которой свидетельствует ишемия конечности. «Артериография» — общее название контрастного рентгенологического исследования любой артерии. На практике нередко используют частные термины: в зависимости от цели и места введения контрастного вещества различа-  Рис. П.23.Контрастирование чревного ствола и его ветвей. а — ранняя артериальная фаза: видны артерии печени, левая желудочная артерия, селезеночная артерия, желудочно-двенадцатиперстная артерия; б — поздняя артериальная фаза и начало паренхиматозной фазы: определяется тень стенки желудка и селезенки; в — венозная фаза: выделяется тень воротнойвены и ее ветвей в печени. ют аортографию, коронарографию, ка-ротидную и вертебральную артериогра-фию, целиакографию, мезентерикогра-фию и т.д. Для выполнения всех этих видов ангиографии конец рентгено-контрастного катетера вводят в исследуемый сосуд. После инъекции контрастного вещества оно заполняет основной ствол и крупные ветви, затем переходит в ветви среднего и малого калибра. Далее контрастное вещество накапливается в капиллярах, отчего интенсивность тени органов, снабжаемых исследуемым сосудом, возрастает. Наконец, контрастное вещество появляется в венозных путях оттока. При введении контрастного вещества в артерию на ангиограммах в норме последовательно отражаются закономерные фазы кровотока: артериальная, капиллярная (паренхиматозная), венозная. Это позволяет судить о регионарной гемодинамике (рис. 11.23). Рис. 11.24. Контрастирование нижней полой вены (кавография) через катетер, введенный в правую подвздошную вену. | Венография может быть выполнена прямым и непрямым способами. При прямой венографии контрастное вещество вводят в кровь путем вено-пункции или веносекции, в ряде случаев с применением катетеризации по методу Сельдингера (рис. 11.24). м1^^_иш^_^^^_—_,__ Непрямое контрастирование вен осуществляют одним из трех способов: 1) введением контрастного вещества в артерии, из которых оно через систему капилляров достигает вен (иными словами, используют венозную фазу артериографии для получения изображения вен); 2) инъекцией контрастного вещества в костномозговое пространство, из которого оно поступает в соответствующие вены; 3) введением контрастного веществе в паренхиму органа путем пункции, при этом на снимках отображаются вены, отводящие кровь от данного органа. Таким образом, например, получают изображение селезеночной и воротной вен, вводя контрастное вещество в паренхиму селезенки (спленопортография). К венографии есть ряд специальных показаний: хронический тромбофлебит, тромбоэмболия, постгромбофлебитические изменения вен, подозрение на аномалию развития венозных стволов, различные нарушения венозного кровотока, в том числе из-за недостаточности клапанного аппарата вен, ранение вен, состояния после оперативных вмешательств на венах. Методика венографии зависит от области исследования и будет описана в соответствующих главах III части учебника. Здесь необходимо подчерк-  Рис. П.25. Дигитальная субтракционная ангиография. а — каротидная артериограмма головного мозга; б — абдоминальная аортограмма. нугь, что к числу противопоказаний к исследованию относится острый тромбофлебит. По окончании флебографии в вену вводят изотонический раствор натрия хлорида. Место пункции прижимают указательным пальцем. После остановки кровотечения накладывают асептическую повязку. Если появляется боль по ходу вены, повышается температура тела и наступает пастозность конечности, ноге придают возвышенное положение, делают повязку с бальзамическим линиментом по А.В. Вишневскому и внутривенно капельно вливают гепарин — 5000 ЕД в 250 мл изотонического раствора натрия хлорида. Производят тугое бинтование конечности. Рис. 11.26. Лимфограмма. Контрастное вещество заполнило лимфатические сосуды бедра и таза. По ходу сосудов видны контрастированные бедренные и подвздошные лимфатические узлы. | Новой методикой рентгенологического исследования сосудов является дигитальная суб-тракционная ангиография (ДСА). В основе ее лежит принцип ком** пьютерного вычитания (субтрак-ции) двух изображений, записанных в памяти компьютера,— снимков до и после введения контрастного вещества в сосуд. Благодаря компьютерной обработке итоговая рентгенологическая картина сердца и сосудов отличается высоким качеством, но главное — на ней можно выделить изображение сосудов из общего изображения исследуемой части тела, в частности убрать мешающие тени мягких тканей и скелета и количественно оценить гемодинамику (рис. 11.25). Существенным преимуществом ДСА по сравнению с другими методиками является уменьшение необходимого количества рентгеноконтрастного вещества, поэтому можно получить изображение сосудов при большом разведении контрастного вещества. А это означает (внимание!), что можно ввести контрастное вещество внутривенно и на последующей серии снимков получить тень артерий, не прибегая к их катетеризации. В настоящее время почти повсеместно обычную ангиографию заменяют на ДСА. Необходимо отметить, что в связи с развитием других, альтернативных методов визуализации сосудов, в частности компьютерной, магнитно-резонансной а ультразвуковой ангиографии и допплеровского картирования (см. соответствующие разделы), значительно уменьшилась частота выполнения ангиографии в клинической практике. Для выполнения лимфографии контрастное вещество вливают непосредственно в просвет лимфатического сосуда. В клинике в настоящее время проводят главным образом лимфографию нижних конечностей, таза и за-брюшинного пространства (рис. 11.26). Контрастное вещество — жидкую масляную эмульсию йодистого соединения — вводят в сосуд со скоростью 0,25—0,5 мл/мин- Рентгенограммы лимфатических сосудов делают спустя 15—20 мин, а рентгенограммы лимфатических узлов — через 24 ч. Показания к лимфографии сравнительно узки. К ней прибегают при системных и опухолевых заболеваниях для уточнения локализации, степени и характера поражения лимфатических узлов. В частности, такая необходимость может возникнуть при планировании лучевой терапии у онкологических больных. Однако благодаря развитию компьютерной томографии, позволяющей получить четкое изображение лимфатических узлов, в настоящее время применение лимфографии в онкологической клинике ограничено. |