МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Лабораторная работа: Дифференциальные уравнения





Задача 1. Найти решение уравнения с разделенными переменными ydy=(exp(x)/1+exp(x))dx, удовлетворяющее начальному условию y(0)=1 (задача Коши). Изобразите график решения (интегральную кривую, проходящую через точку (0,1)).

Решение:

1) Установите режим автоматических вычислений.

2) Установите режим отображения результатов символьных вычислений по горизонтали, установив метку Horizontaly в окне диалога строки Evaluation Style меню Symbolics.

3) Введите начальные условия y(x0)=y0:

4) Если уравнение имеет вид Y(y)dy=X(x)dx, определите подынтегральные функции Y(y) и X(x):

5) Вычислите символьно интегралы с переменными верхними пределами и нижними пределами, равными начальным условиям x0 и y0:

6) Запишите уравнение , задающее неявно y(x) как функцию x, и решите его символьно относительно переменной y:

7) Выбираете решение, удовлетворяющее условию y(0)=1, и определите как функцию переменной x:

8) Постройте график найденного решения:

 

Задача 2. Решите на отрезке [0,3] задачу Коши y'=sin(xy), y(0)=1 методом Рунге-Кутты с постоянным шагом на сетке из 20 (40, 100) равнооотстоящих узлов.

Решение:

1) Установите режим автоматических вычислений.

2) Присвойте переменной ORIGIN значение, равное 1:

3) Присвойте начальное значение решения переменной y1:

4) Определите правую часть уравнения f(x,y):

5) Вычислите решение, используя функцию rkfixed(y,x1,x2,npoints,f), где у - вектор начальных условий, х1 и х2 - концы отрезка интегрирования, npoints- число узлов на отрезке интегрирования, f - правая часть уравнения. В результате получите матрицу размерности (npoints, 2), в первом столбце которой содержатся значения х, во втором - значения у.

6) Постройте на одном графике найденные решения:

 

Задача 3. Решите на отрезке [0,3] задачу Коши у"=ехр(-ху), у(0)=1, у'(0)=1 методом Рунге-Кутты с постоянным шагом на сетке из 20 (40 , 100) равноотстоящих узлов.

Решение:

Сведите решение задачи для уравнения к задаче для системы. Обозначьте у1(х)=у(х) и у2(х)=у'(х). Поскольку у"(х)=(у'(x))'=y2'(x), то получим

у1'=y2 y1(0)=1

y2'=exp(-xy1) y2(0)=1

1) Установите режим автоматических вычислений.

2) Присвойте переменной ORIGIN значение, равное 1:

3) Присвойте начальное значение решения вектору-столбцу с именем у:

4) Определите правую часть уравнения, присвойте соответствующие выражения элементам вектора-столбца с именем f(x,y):

5) Вычислите решение, используя функцию rkfixed:

6) Постройте на одном графике найденные решения:

 

Задача 4. Найдите общее решение однородного уравнения y''+2y'+3y=0. Решите задачу Коши с начальными условиями у(0)=1, y'(0)=1. Проверьте правильность решения. Изобразите его график.

Решение:

1) Установите режим автоматических вычислений.

2) Присвойте переменной ORIGIN значение, равное 1:

3) Запишите характеристический многочлен уравнения и найдите его корни:

4) Если характеристическое уравнение имеет 2 различных действительных корня l 1 и l 2, то фундаментальная система решений имеет вид и . Если характеристическое уравнение имеет 2 равных действительных корня l 1=l 2=l , то фундаментальная система решений имеет вид и . Если характеристическое уравнение имеет 2 комплексных корня l 1=a +ib и l 2=a -ib , то фундаментальная система решений имеет вид и .

Запишите функции фундаментальной системы решений:

5) Запишите общее решение уравнения (как функцию переменных х, с1 и с2):



6) Найдите значения констант с1 и с2, при которых выполняются заданные начальные условия у(0)=1 и у'(0)=1:

7) Запишите решение задачи Коши:

8) Проверьте решение подстановкой в уравнение:

9) Проверьте выполнение начальных условий:

10) Постройте график решения:

11) Решите задачу Коши методом Рунге-Кутты и постройте график приближенного решения:

12) Сравните графики.

 

Задача 5. Найдите общее решение неоднородного уравнения y''+2y'+3y=x*x+1. Проверьте правильность решения.

Решение:

Общее решение линейного неоднородного уравнения записывается как сумма общего решения однородного уравнения и любого частного решения неоднородного уравнения.

1) Установите режим автоматических вычислений.

2) Присвойте переменной ORIGIN значение, равное 1:

3) Найдите общее решение однородного уравнения у"+2y'+3y=0:

4) Запишите выражение для частного решения как функцию переменной х и неизвестных коэффициентов. Вид частного решения устанавливается по виду правой части уравнения.

5) Подставьте выражение частного решения в левую часть уравнения:

6) В полученном выражении приведите подобные отностительно степеней х, для чего выделите переменную х и щелкните по строке Collect в меню Symbolics:

7) Приравняв коэффициенты при степенях х полученного выражения левой части уравнения и выражения правой части, запишите и решите систему относительно параметров а1, а2, а0:

8) Запишите частное решение с найденными коэффициентами а2,а1,а0:

9) Запишите общее решение:

10) Проверьте решение подстановкой:

 


[1] По материалам: Контур управления: Книга 2: Учебное пособие/Пер. с англ. - Жуковский: МИМ ЛИНК, 2005. – 82 с.: рис., табл., диагр. – («Менеджер и организация»).

[2] По материалам: Плотинский Ю.М. Модели социальных процессов: Учебное пособие для высших учебных заведений. – Изд. 2-е, перераб. и доп. – M.: Логос, 2001. – 296 с.: ил.

[3] Адаптировано по материалам сайта www.exponenta.ru





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.