ПОЗНАВАТЕЛЬНОЕ Сила воли ведет к действию, а позитивные действия формируют позитивное отношение Как определить диапазон голоса - ваш вокал
Игровые автоматы с быстрым выводом Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими Целительная привычка Как самому избавиться от обидчивости Противоречивые взгляды на качества, присущие мужчинам Тренинг уверенности в себе Вкуснейший "Салат из свеклы с чесноком" Натюрморт и его изобразительные возможности Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д. Как научиться брать на себя ответственность Зачем нужны границы в отношениях с детьми? Световозвращающие элементы на детской одежде Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия Как слышать голос Бога Классификация ожирения по ИМТ (ВОЗ) Глава 3. Завет мужчины с женщиной 
Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д. Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. | ОПОРНО-ДВИГАТЕЛЬНАЯ СИСТЕМА Мир в наши дни так быстро движется вперед, что не успевает человек заявить о невозможности решения какой-' либо задачи, как его перебивает другой, уже решивший ее. Эл берт Хаббард В 1918 г. в Государственном рентгенологическом и радиологическом институте в Петрограде была открыта первая в мире лаборатория для изучения анатомии человека и животных с помощью рентгеновского излучения. Советские ученые — А.С. Золотухин, М.Г. Привес, С.А. Рейнберг, ДТ. Рохлин и др.— тщательно изучили процессы окостенения, роста, формообразования и дифференцирования костной системы у человека, разработали анатомию скелета у людей разного возраста и разных профессий, заложили основы^ентгеноантропологии и затем рентгеноостеопатолоеии. Рентгенологический метод позволил получить новые данные об анатомии и физиологии опорно-двигательного аппарата: исследовать строение и функцию костей и суставов прижизненно, в целостном организме, при воз- действии на человека разнообразных факторов внешней среды. Еще в до-рентгеновскую эру, когда анатомия базировалась главным образом на анализе трупного материала, выдающийся русский анатом П.Ф. Лесгафт писал: «... мертвый препарат должен служить только проверкой и дополнением к изучаемому живому организму». Рентгенологические исследования дали возможность по-новому взглянуть на традиционные проявления болезней скелета, пересмотреть существовавшие до того классификации его поражений, описать много неизвестных дотоле патологических процессов в костях. Рентгенограммы — основной способ изучения лучевой морфологии костей в норме и при патологии. Для исследования ранних изменений в замыкающих пластинках эпифизов и субхондральном слое кости выполняют снимки с прямым увеличением рентгеновского изображения. При исследовании сложно устроенных отделов скелета (череп, позвоночник, крупные суставы) большую пользу приносит обычная (линейная) томография. Постепенно в ряд наиболее эффективных способов исследования опорно-двигательного аппарата выдвигается компьютерная томография. Магнит" но-резонансная томография оказалась самым ценным методом исследования костного мозга, так как открыла пути обнаружения отека, некроза и инфаркта костного мозга и тем самым начальных проявлений патологических процессов в скелете. Кроме того, магнитно-резонансная томография и спектрометрия дали врачу возможность прижизненно изучать морфологию и биохимию хрящей и мягкотканных образований опорно-двигательной системы. Новые пути диагностики заболеваний опорно-двигательной системы открыла и сонография. На сонограммах получают отображение инородные тела, слабо поглощающие рентгеновское излучение и потому невидимые на рентгенограммах, суставные хрящи, мышцы, связки и сухожилия, скопления крови и гнойной жидкости в околокостных тканях, околосуставные кисты и пр. Наконец, радионуклидная сцинтиграфия оказалась эффективным способом исследования метаболических процессов в костях и суставах, поскольку обеспечила возможность изучения активности минерального обмена в костной ткани и синовиальной оболочке суставов. Лучевая анатомия скелета Скелет проходит сложный путь развития (рис. 111,216). Оно начинается с формирования соединительнотканного скелета. Со второго месяца внутриутробной жизни последний постепенно преобразуется в хрящевой скелет (только свод черепа, кости лицевого черепа и тела ключиц не проходят хрящевую стадию). Затем осуществляется длительный переход от хрящевого к костному скелету, который завершается в среднем к 25 годам. Процесс окостенения скелета хорошо документируется с помощью рентгенограмм. У новорожденного на концах большинства костей еще нет ядер окостенения и они состоят из хряща, поэтому эпифизы не видны на рентгенограммах и рентгенологические суставные щели кажутся необычайно широкими. В последующие годы точки окостенения появляются во всех эпифизах и апофизах Слияние эпифизов с метафизами и апофизов с диафизами  Рис. Ш.216. Схематические изображения костей локтевого сустава в разные возрастные периоды. а — в возрасте 1 мес; б — 1 года; в — 5 лет; г — 10 лет; д — 12 лет; е — 17 лет. (так называемое синостозирование) происходит в определенном хронологическом порядке и, как правило, относительно симметрично с обеих сторон. Порядок окостенения скелета конечностей представлен в табл. III.2. Таблица III.2. Сроки окостенения скелета конечностей Анатомическая область | Возраст появления ядра окостенения | Возраст синостози- рования | Верхняя конечность Плечевой отросток (акромион) Клювовидный отросток Головка плечевой кости Головка мыщелка плечевой кости Блок плечевой кости Латеральный над мы щелок Медиальный надмыщелок Локтевой отросток « Головка лучевой кости Дистальный эпифиз лучевой кости Дистальный эпифиз локтевой кости Крючковидная кость Трехгранная кость | 16—18 лет 7—12 мес 4-8 » 11 мес — 2 года 9—11 лет 9-12 » 6-9 1 9-11 » 5-7 » 7 мес — 3 года 6—7 лет 3-6 » 2—3 года | 20—22 года 16—18 лет 20—22 года 19 лет 19 » 19 » 19 » 17—19 лет 17-19 » 21—23 года 19—21 год | Продолжение табл. III.2 Анатомическая область | Возраст появления ядра окостенения | Возраст сйностози- рования | Полулунная кость | 3—4 года | | Ладьевидная кость | 5 лет | | Многоугольная кость | 5—6 лет | | Гороховидная кость | 10—11 » | | Эпифизы оснований фаланг и головок | 2—3 года | 16—19 лет | пястных костей | | | Сесамовидные кости | 13—14 лет | | Нижняя конечность | | | Головка бедренной кости | 8—10 мес | 18-20 » | Большой вертел | 3—7 лет | 20» | Малый вертел | 8—10 » | 18 » | Дистальный эпифиз бедренной кости | 9 мес внутриутробного — 1 мес постнатального развития | 19-23 года | Проксимальный эпифиз бедренной кости | 10 мес внутриутробного — 2 мес постнаталь-ного развития | 20-23 » | Головка малоберцовой кости | 3—4 года | 21-23 l | Надколенник | 4—5 лет | | Дистальный эпифиз большеберцовой кости | 10 мес — 2 года | 16—19 лет | Дистальный эпифиз малоберцовой кости | 2 года | 17-21 год | Пяточная кость | 5—6 мес внутриутробного развития | | Пяточный бугор | б—9 лет | | Таранная кость | 7—8 мес внутриутробного развития | | Кубовидная кость | 10 мес внутриутробного развития | | Медиальная клиновидная кость | 3—4 мес | | Промежуточная клиновидная кость | 3-4 » | | Латеральная клиновидная кость | 6-7 » | | Ладьевидная кость | 4 года | | Эпифизы оснований фаланг и головок | 3 » | 16—20 лет | плюсневых костей | | | Сесамовидные кости ■ - -Л | 12—14 лет | | Анализ формирования центров окостенения и сроков синостозирова-ния имеет большое значение в лучевой диагностике. Процесс остеогенеза по тем или иным причинам может быть нарушен, и тогда возникают врожденные или приобретенные аномалии развития всего скелета, отдельных анатомических областей или отдельной кости. С помощью лучевых методов могут быть выявлены различные формы нарушения окостенения скелета: асимметрия появления точек окостенения, ускоренное или замедленное синостозирование и т.д, возникающие при врожденных или приобретенных эндокринопатиях, нарушеГи^ Глового РМТ^^^1ГНеГ,еСКИХ »*■»«**■ Нередко Гклю^е спеГа-листа в области лучевой диагностики представляет собой ключ к разгадке существа болезни, внешние проявления которой неопределенны. Рентгенологический анализ остеогенеза важен также для судебной медицины и криминалистики, так как позволяет установить так называемый костный возраст. Среди всего многообразия'костей (у человека их более 200) принято выделять трубчатые (длинные: плечевая, кости предплечья, бедренная, кости голени; короткие: ключицы, фаланги, кости пясти и плюсны), губчатые (длинные: ребра, грудина; короткие: позвонки, кости запястья, плюсны и сесамовидные), плоские (кости черепа, таза, лопатки) и смешанные (кости основания черепа) кости. Положение, форма и величина всех костей четко отражаются на рентгенограммах. Поскольку рентгеновское излучение поглощается главным образом минеральными солями, на снимках видны преимущественно плотные части кости, т.е. костные балки и трабекулы. Мягкие ткани — надкостница, эндост, костный мозг, сосуды и нервы, хрящ, синовиальная жидкость -— в физиологических условиях не дают структурного рентгеновского изображения, равно как окружающие кость фасции и мышцы. Частично все эти образования выделяются на сонограммах, компьютерных и особенно магнитно-резонансных томограммах (рис. III.217, III.218). Костные балки губчатого вещества состоят из большого числа тесно прилегающих друг к другу костных пластинок, которые образуют густую сеть, напоминающую губку, что и послужило основанием для названия данного вида костной структуры — губчатая. В корковом слое костные пластинки расположены очень плотно. Метафизы и эпифизы состоят преимущественно из губчатого вещества. Оно дает на рентгенограмме особый костный рисунок, составленный переплетенными костными балками. Эти костные балки и трабекулы располагаются в виде изогнутых пластинок, соединенных поперечными перекладинами, или имеют вид трубок, образующих ячеистую структуру. Соотношение костных балок и трабекул с костномозговыми пространствами определяет костную структуру. Она, с одной стороны, обусловлена генетическими факторами, а с другой — в течение всей жизни человека находится в зависимости от характера функциональной нагрузки и во многом определяется условиями жизни, труда, спортивными нагрузками. На рентгенограммах трубчатых костей различаются диафизы, метафизы, эпифизы и апофизы (рис. III.219). Диафиз — это тело кости. В нем на всем протяжении выделяется костномозговой канал. Он окружен компактным костным веществом, которое обусловливает интенсивную однородную тень по краям кости — ее кортикальный слой, который постепенно истончается по направлению к метафизам. Наружный контур кортикального слоя резкий и четкий, в местах прикрепления связок и сухожилий мышц он неровный. Некоторые из этих неровностей (например, бугристость большеберцовой кости) развиваются из самостоятельных ядер окостенения и до момента синостозирова-  Рнс. Ш.217. Магнитно-резонансная томограмма стопы в боковой проекции. Дифференцированное изображение всех анатомических элементов, включая сухожилия, мышцы, фасции.  Рис. Ш.218. Магнитно-резонансная томограмма коленного сустава. Четко вырисовываются мениски и другие мягкотканные образования.  Рис. Ш.219. Обзорная рентгенограмма таза. ~" гУбчатое вешество подвздошной кости; 2 — головка бедренной кости; 3 — эпи-метафизарный ростковый хрящ; 4 — ядро окостенения большого вертела; 5 — апо-физарный ростковый хрящ; б — кортикальный слой бедренной кости; 7 — тень металлического экрана для защиты гонад от рентгеновского излучения. ния с диафизом отделены от последнего светлой полоской апофизар-ного росткового хряща. Внутренний контур кортикального слоя сравнительно ровный, но от него могут отходить отдельные костные балки в сторону костномозгового канала. Участки кости, в которых теряется изображение костномозгового канала, состоят преимущественно из губчатой кости и носят название «метафизы». У детей они отделены от суставного конца кости — эпифиза — светлой полоской эпиметафи-зарного росткового хряща. Кортикальный слой по направлению к эпифизу истончается и в области суставной поверхности превращается в очень тонкую замыкающую пластинку. Апофиз — это выступ кости вблизи эпифиза, имеющий самостоятельное ядро окостенения; он служит местом начала или прикрепления мышц. Суставной хрящ на рентгенограммах не дает тени. Вследствие этого между эпифизами, т.е. между суставной головкой одной кости и суставной впадиной другой кости, определяется светлая полоса, называемая рентгеновской суставной щелью.  Рис. Ш.220. Сонограмма плечевого сустава. Разрыв ротатора. Рентгеновское изображение плоских костей существенно отличается от картины длинных и коротких трубчатых костей. В своде черепа хорошо дифференцируется губчатое вещество (диплоический слой), окаймленное тонкими и плотными наружной и внутренней пластинками. В костях таза выделяется структура губчатого вещества, покрытого по краям довольно выраженным кортикальным слоем. Смешанные кости в рентгеновском изображении имеют различную форму, которую можно правильно оценить, производя снимки в разных проекциях. Особенностью AT является изображение костей и суставов в аксиальной проекции. Кроме того, на компьютерных томограммах получают отражение не только кости, но и мягкие ткани; можно судить о положении, объеме и плотности мышц, сухожилий, связок, наличии в мягких тканях скоплений гноя, опухолевых разрастаний и т.д. Чрезвычайно эффективный метод исследования мышц и связочного аппарата конечностей — сонография. Разрывы сухожилий, поражения их манжет, выпот в суставе, пролиферативные изменения синовиальной оболочки и синовиальные кисты, абсцессы и гематомы в мягких тканях — таков далеко не полный перечень патологических состояний, выявляемых с помощью ультразвукового исследования (рис. Ш.220). Особо нужно остановиться на родионуклидной визуализации скелета. Ее выполняют путем внутривенного введения меченных технецием фосфатных соединений (""Тс-пирофосфат, *9юТс-дифосфонат и др.). Интенсивность и скорость включения РФП в костную ткань зависят от двух основных факторов — величины кровотока и интенсивности обменных процессов в кости. Как увеличение, так и снижение кровообращения и метаболизма неизбежно отражаются на уровне включения РФП в костную ткань, поэтому находят свое отображение на сцинтиграммах. В случае необходимости проведения исследования сосудистого компонента применяют трехэтапную методику. На 1-й минуте после внутривенной инъекции РФП в памяти компьютера регистрируют фазу артериального кровообращения, со 2*Й по 4-ю минуту следует динамическая серия «кровяного пула». Это — фаза общей васкуляризации. Через 3 ч про- изводят сцинтиграмму, которая является «метаболическим» изображением скелета. У здорового человека РФПсравнительно равномерно и симметрично накапливается в скелете (см. рис. 11.27). Его концентрация выше в зонах роста костей и области суставных поверхностей. Кроме того, на сцинти-граммах появляется тень почек и мочевого пузыря, так как около 50 % пВлпОДЖЯ в эти же сроки через мочевой тракт. Снижение концентрации РФП в костях наблюдается при аномалиях развития скелета и нарушениях обмена веществ. Отдельные участки слабого накопления («холодные» очаги) обнаруживаются в области костных инфарктов и асептического некроза костной ткани. Локальное увеличение концентрации РФП в кости («горячие» очаги) наблюдается при ряде патологических процессов — переломах, остеомиелитах, артритах, опухолях, но без учета анамнеза и клинической картины болезни расшифровать природу «горячего» очага обычно невозможно. Таким образом, методика остеосцинтиграфии характеризуется высокой чувствительностью, но низкой специфичностью. В заключение следует отметить, что в последние годы лучевые методы широко используют как составную часть интервенционных вмешательств. К ним относятся биопсия костей и суставов, включая биопсию межпозвоночных дисков, подвздошно-крестцового соединения, периферических костей, синовиальных оболочек, околосуставных мягких тканей, а также инъекции лечебных препаратов в суставы, костные кисты, гемангиомы, аспирация отложений извести из слизистых сумок, эмболизация сосудов при первичных и метастатических опухолях костей. Лучевые симптомы |