МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Химическая природа ферментов





Ферментами называются глобулярные белки. Они подразделяются на однокомпонентные ферменты (простые белки) и двухкомпонентные ферменты (сложные белки). Сложные ферменты называются холоферментами. Белковые компоненты двухкомпонентных ферментов называются апоферментами, небелковые – кофакторами. Последние подразделяются на коферменты и простатические группы. Кофермент – это небелковая часть, лабильно связанная с апоферментом, простетическая группа – небелковая часть, прочно связанная с белком.

Существует несколько классификаций ферментов.

1. Тривиальная номенклатура.

Первоначально ферментам давали названия, образуемые путем добавления окончания -аза к названию субстрата, на который данный фермент действует, например: см. Энзимологию!!

Амилазы (от греч. amilos – крахмал) – ферменты, гидролизующие крахмал (амилон).

Липазы (от греч. lipos – жир) – ферменты, гидролизующие жиры (липос).

Протеиназы (от греч. protos – главный, важный) – ферменты, гидролизующие белки (протеины).

2. Номенклатура по типу реакции.

Ферментам, катализирующим близкие по типу реакции, давали названия, указывающие тип реакции: ацилазы, декарбоксилазы, дегидрогеназы, оксидазы.

Номенклатура, введенная Международным биохимическим союзом (УИВ).

Основные принципы номенклатуры УИВ состоят в следующем:

- главный принцип – ферменты называются и классифицируются в соответствии с типом и механизмом; чего??

- реакции и ферменты, которые их катализируют, подразделяются на шесть классов, в каждом из которых имеется несколько подклассов (от 4 до 18);

- название фермента состоит из двух частей (первая часть – название субстрата или субстратов, вторая – тип катализируемой реакции) и оканчивается на -аза;

- дополнительная информация заключается в скобки;

- каждый фермент имеет кодовый номер по классификации ферментов (КФ). Первая цифра характеризует класс реакции, вторая – подкласс, третья – подподкласс, четвертая – порядковый номер фермента в его подподклассе. Например, КФ 2.7.1.1 означает, что фермент относится к классу 2 (трансфераза), подклассу 7 (перенос фосфата), подподклассу 1 (акцептором является спирт). Последняя цифра обозначает фермент гексокиназу – D-гексозо-6-фосфотрансферазу, т. е. фермент, катализирующий перенос фосфата с АТФ к глюкозе.

Классы ферментов

Ферменты подразделяются на шесть классов:

1. Оксидоредуктазы (18 подклассов).

2. Трансферазы, или феразы (8 подклассов).

3. Гидролазы (11 подклассов).

4. Лиазы, или десмолазы (6–7 подклассов).

5. Изомеразы и мутазы (5–6 подклассов).

6. Лигазы, синтетазы (5 подклассов).

Оксидоредуктазы

Оксидоредуктазы – ферменты, катализирующие окислительно-восстановительные реакции с участием двух субстратов:

Sвосст. + S¢окисл. = Sокисл + S¢восст.

Ферменты катализируют реакции, в которых участвуют такие группы, как СН–ОН, СН–СН, С=О, СН–NН2, –СН–NН–.

Примеры оксидоредуктаз:

1. Ферменты дыхательной цепи – цитохромы.

2. Каталаза – фермент, катализирующий расщепление Н2О2; предохраняет организм от вредного воздействия Н2О2.

3. Пероксидаза – фермент, ускоряющий окисление Н2О и О2 до Н2О2.

4. К оксидоредуктазам относятся дегидрогеназы – ферменты, отнимающие водород от одних органических веществ и передающие другим органическим соединениям (анаэробные дегидрогеназы) или О2 воздуха (аэробные дегидрогеназы).



Дегидрогеназами называются оксиредуктазы, которые окисляют субстраты путем отнятия водорода. Дегидрогеназы – это ферменты, отнимающие водород от одних органических веществ и передающие другим органическим соединениям (анаэробные дегидрогеназы) или кислороду воздуха (аэробные дегидрогеназы).

Анаэробные дегидрогеназы содержат коферменты НАД (козимаза), НАДФ, аэробные – ФАД.

В клетке окислительные процессы происходят по нескольким механизмам:

1. Окисление по типу отнятия электронов:

An+ электроны Am+

2. Окисление по типу отнятия водорода:

-2Н

А1 А2

3. Окисление путем присоединения к субстрату кислорода:

А1 + О2 А2

Оксидоредуктазы подразделяют на дегидрогеназы, оксидазы, оксигеназы. Кроме того, в митохондриях клеток содержится группа ферментов – промежуточных переносчиков электронов дыхательной цепи.

Дегидрогеназы – оксидоредуктазы, которые окисляют субстрат путем отнятия водорода.

Оксигеназы – это ферменты, осуществляющие включение одного (оксигеназы) или двух (диоксигеназы) атомов кислорода в молекулу субстрата. К ним относятся ферменты, осуществляющие окисление путем передачи восстановительного эквивалента от субстрата, либо на молекулярный кислород, либо на кислород пероксида водорода или органических перекисей.

К оксидазам относятся пероксидазы и полифенолоксидазы.

Пероксидазы – ферменты, окисляющие субстрат при помощи пероксида водорода:

Н2О2 + АН2 А + 2 Н2О2,

где АН2, А – восстановленный и окисленный субстраты соответственно.

Субстратами пероксидаз служат фенолы и ароматические соединения.

Пероксидазы – это железосодержащие ферменты, гемом которых является феррипротопорфирин IX. Окисление субстратов осуществляется по одноэлектронному механизму. Первой стадией каталитического процесса является образование комплекса между железом фермента и пероксидом водорода. Следовательно, окисление субстрата осуществляется пероксидом водорода, который активирован ферментом.

Е-Н2О + Н2О2 ® Е-Н2О2 + Н2О

соединение 1

Е-Н2О2 + АН2 ® Соединение 2 + АН·

Соединение 2 + АН· ® Е-Н2О + А

Пероксидазы широко распространены в растительных тканях. Они находятся в клеточной стенке и пероксисомах. Известно более 20 изоформ пероксидаз с различной активностью. Роль пероксидаз в биохимии и физиологии растений окончательно не выяснена. Пероксидазы наряду с каталазой препятствуют накоплению пероксида водорода в клетке, выполняют защитную функцию, играют важную роль в онтогенезе растений при патогенезе, противостоянии стрессу, различных механических повреждениях.

Пероксидазы участвуют в нейтрализации продуктов вторичного обмена (фенолов), в регуляции гормонального статуса растений через окисление индолилуксусной кислоты, образование этилена из метионина, участвуют в процессах синтеза лигнина в клеточной стенке. Образованные в пероксидазных реакциях активные формы кислорода могут использоваться растениями для защиты от патогена. Пероксидазы могут разрушать комплексы, содержащие радионуклеиды, препятствовать их накоплению, это чрезвычайно важно с позиции экологии Севера.

Анализ ферментативной активности пероксидаз проводится фотоколориметрическим методом при длине волны 440 нм, рабочей длине кюветы – 2 см.

Определение активности пероксидазы основано на образовании красно-коричневых окрашенных продуктов при окислении фенола, бензидина, гваякола, катехола и других фенольных соединений.

Общая схема реакции:

Фенол + Н2О2 пероксидаза Хинон + Н2О

красно-коричневая
окраска

Типичным примером оксиредуктаз является Полифенолоксидаза – оксидоредуктаза, катализирующая окисление полифенолов. Определение активности полифенолоксидазы проводится фотоколориметрическим методом при длине волны 590 нм, рабочей длине кюветы 2 см, при воздействии на систему пирокатехин-р-фенилендиамин.

Реакция протекает следующим образом:

ОН ОН О О

полифенолоксидаза

+ Н2О

-2Н +1/2О2

 

о-хинон

О О NH2 NH ОН ОН

               
       


+ +

               
   
 
     


NH2 NH

 

о-хинон р-фенилендиамин коричневый пирокахетин

окрашенный

продукт

 

Полифенолоксидаза содержится в высших растениях и грибах. Массовая доля меди в ней составляет 0,2–0,3 %. Молекулярная масса полифенолоксидазы у грибов равна 34 500, у чайного листа – 144 000. Полифенолоксидаза участвует в окислении полифенолов и дубильных веществ, ее действием объясняется потемнение плодов и овощей при сушке, потемнение поверхностей разрезанных яблок или картофельного клубня.

Каталаза

Каталаза относится к классу оксидоредуктаз. Биологическая роль каталазы состоит в том, что каталаза разрушает токсичную для животных и растительных клеток Н2О2, Н2О2 накапливается где? как рабочий продукт метаболизма.

каталаза

2 Н2О2 2 Н2О + О2

Каталаза – двухкомпонентный фермент, состоящий из белка и простетической группы, которая содержит гематин и связывается с белком двумя карбоксилами.

Каталаза локализуется в пероксисомах. Это быстродействующий фермент, при 0 0С одна молекула каталазы разлагает до 40 000 молекул в секунду. Каталаза ингибируется синильной кислотой.

Трансферазы

Трансферазы – ферменты, катализирующие перенос Какой?? группы от субстрата S на субстрат S¢:

S – G + S¢ ® S¢ – G + S.

Примерами трансфераз являются: дать маркированным списком??

Ацилтрансферазы – ферменты, переносящие ацильные группы
R–СО– (например, ацетил СН3СО–).

Ацетил-СоА + холин ® СоА + О-ацетилхолин

Алкилтрансферазы – ферменты, переносящие алкильные группы (метилтрансферазы переносят СН3-, метил).

Фосфотрансферазы – ферменты, преносящие группы, содержащие фосфор.

Гликозилтрансферазы – ферменты, катализирующие перенос остатков моносахаридов. К гликозилтрансферазам относятся фосфорилазы. Представителем фосфорилаз является крахмальная фосфорилаза (a-глюканфосфорилаза, КФ 2.4.1.1).

Гидролазы

Гидролазами называются ферменты, катализирующие процессы гидролиза (гидролиз эфирных, сложноэфирных, пептидных и гликозильных связей, кислотных ангидридов, связей С–С, С–галоида, Р–N).

Гидролазы подразделяются на эстеразы, карбогидразы, протеазы, амидазы, дезаминазы, фосфорилазы.

Эстеразы – ферменты, катализирующие реакции расщепления и синтеза сложных эфиров:

эстеразы

R–СО–О–R1 + Н2О R–СООН +R1 ОН

К ним относятся липазы, танназы, см. ниже! число?? хлорофиллазы, пектинэстеразы (пектазы), фосфатазы, сульфатазы.

Липазы (шифр КФ 3.1.1.3) – это эстеразы, катализирующие гидролиз и синтез жиров.

СН2–О–СО–R1 СН2–ОН

| |

СН–О–СО–R2 + 3 Н2О липаза Н–ОН + R1СООН + R2СООН +R3СООН

| |

СН2–О–СО–R3 СН2–ОН

Танназа см. выше! – фермент, катализирующий гидролиз сложного эфира таннина.

Хлорофиллаза – эстераза, катализирующая переэтерификацию хлорофилла. Пектозы катализируют гидролиз эфиров пектина.

Фосфатазы ускоряют расщепление и синтез сложных эфиров, образованных спиртами и фосфорной кислотой. Они подразделяются на фосфатазы неспецифического и специфического действия. Неспецифические фосфатазы катализируют отщепление Н3РО4 от фосфорных эфиров, для них характерен широкий диапазон рН (4,5–9,0). К данным фосфатазам относятся рибонуклеаза и дезоксирибонуклеаза, катализирующие распад рибонуклеиновой и дезоксирибонуклеиновой кислот. Специфические фосфатазы действуют на фосфорные эфиры определенного состава. К ним относится фруктозодифосфатаза, действующая только на фруктозодифосфорную кислоту. Сульфатазы катализируют гидролиз и синтез сложных эфиров серной кислоты.

Карбогидразыферменты, катализирующие гидролиз и синтез гликозидов, ди-, три- и полисахаридов. См. энзимологию с. 17!! Карбогидразы подразделяются на олигазы и полиазы. Полиазы и олигазы – ферменты, катализирующие гидролиз полисахаридов, а олигазы кроме того катализируют гидролиз олигосахаридов.

К олигазам относятся a-глюкозидаза, b-глюкозидаза, a-галактозидаза, b-галактозидаза, b-фруктофуранозидаза.

a-Глюкозидаза, или мальтаза – фермент, расщепляющий a-глюкозидную связь в дисахаридах и глюкозидах. Биологическим субстратом для данного фермента являются мальтоза и сахароза. Содержится в тканях растений, плесневых грибах, дрожжах, бактериях, проросшем просяном зерне. Просяной солод применяют как добавку к ячменному солоду при изготовлении мальтозной патоки, так как он богат активной мальтазой.

b-Глюкозидаза – фермент, расщепляющий b-глюкозидную связь в ди- и полисахаридах, b-глюкозидах (целлобиоза, пентибиоза, глюкозиды – амигдалин, арбутин).

a-Галактозидаза – фермент, катализирующий гидролиз a-галакто-зидов, например рафинозы и мелибиозы. Содержится в пивных дрожжах и в грибном солоде – такадиастазе (ферментном препарате, полученном из плесневых грибов.

b-Галактозидаза (КФ 3.2.1.23), или лактаза – фермент, катализирующий гидролиз лактозы на глюкозу и галактозу. Содержится в бактериях, плесневых грибах, плодах миндаля, в лактозных дрожжах, в молочных железах животного организма.

b-Фруктофуранозидаза (КФ 3.2.1.26), или сахараза, или инвертаза – фермент, катализирующий расщепление сахарозы на глюкозу и фруктозу.

a-Глюкозидаза гидролизует сахарозу у a-глюкозидного С-атома остатка глюкозы, а b-фруктофуранозидаза гидролизует связь у b-глюко-зидного С-атома остатка фруктозы. b-Фруктофуранозидаза (сахараза) катализирует также гидролизирует рафинозы (триозы) с образованием молекулы фруктозы и молекулы дисахарида мелибиозы.

Полиазы

Одной из полиаз является амилаза, которую называют также птиалином, или диастазом. Амилаза открыта в 1814 г. К.С. Кирхгофом. Амилазы содержатся в слюне, панкреатическом соке, плесневых грибах, проросшем зерне; гидролизует крахмал до декстринов и мальтозы. Амилазы гидролизуют крахмальные зерна и крахмальный клейстер. Установлено наличие существование трех амилаз: a-амилазы, b-амилазы и глюкоамилазы.

a-Амилаза (КФ 3.2.1.1.), другое название – птиалин, декстриногеноамилаза, гликогеназа; содержится в слюне, в проросшем зерне пшеницы, ржи, ячменя.

b-Амилаза (КФ 3.2.1.2.), или сахарогеноамилаза, содержится в зерне пшеницы, ржи, ячменя, соевых бобах.

a-Амилаза и b-амилаза различаются по характеру действия на компоненты крахмала – амилозу и амилопектин.

b-Амилаза расщепляет амилозу на 100 % до мальтозы, амилопектин – на 54 % до мальтозы и 46 % – до декстринов, дающих с йодом красно-коричневое окрашивание. Данные декстрины гидролизуются a-амилазой до декстринов с меньшей молекулярной массой, не дающих окрашивания с йодом, с образованием незначительного количества мальтозы.

Декстрины, образовавшиеся при действии b-амилазы на аминопектин, гидролизуются a-амилазой с образованием декстринов, обладающей меньшей молекулярной массой и дающих окрашивание с йодом.

При последующем длительном действии a-амилазы на крахмал 85 % его превращается в мальтозу. Таким образом, при действии на крахмал
b-амилазы образуется в основном мальтоза и незначительное количество высокомолекулярных декстринов. При действии на крахмал a-амилазы образуются в основном декстрины меньшей молекулярной массы и незначительное количество мальтозы.

a- и b-Амилазы отличаются оптимумом рН: b-амилаза более активна в более кислой среде (a-амилаза – рН 5,5, b-амилаза – рН 4,0).

Так как активность a-амилазы снижается при повышении кислотности, тесто из муки полученной из проросшего зерна замешивают на жидких дрожжах (молочнокислых заквасках), молочная кислота угнетает действие a-амилазы.

a-Амилаза более устойчива к действию повышенных температур, температурный оптимум a-амилазы (68 0С) выше температурного оптимума b-амилазы (52 0С).

Семена растений различаются по содержанию a- и b-амилазы. В непроросших семенах Чем семена отличаются от зерен? пшеницы, ржи и ячменя содержится b-амилаза, a-амилаза образуется лишь при прорастании.
В непроросших и проросших соевых бобах присутствует только b-амилаза, в непроросших семенах сорго – a-амилаза.

Инактиваторы амилазы – белки и дубильные вещества – служат регулирующим фактором в прорастающем и созревающем зерне.

Солод, применяемый при изготовлении пива и при осахаривании картофельных или мучных заторов в спиртовой промышленности, является источником активной амилазы, превращающей крахмал в сбраживаемый сахар – мальтозу. Активный грибной солод получают из плесневых грибов.

Глюкоамилаза (КФ 3.2.1.3) – фермент, гидролизующий крахмал с образованием глюкозы и небольшого количества декстринов. Глюкоамилазу получают из плесневых грибов и используют для получения кристаллической глюкозы и глюкозной патоки.

Целлюлаза – комплекс двух ферментов: эндоглюканазы (КФ 3.2.1.4) и экзоглюканазы (КФ 3.2.1.74). Гидролизует клетчатку с образованием целлобиозы. Целлюлаза содержится в проросшем зерне, бактериях и плесневых грибах; является активным ферментом в грибах-вредителях, живущих на древесине.

Бактерии, живущие в желудках травоядных животных, выделяют активную целлюлазу, гидролизующую клетчатку. Этим объясняется способность животных переваривать и усваивать клетчатку.

Инулиназа (КФ 3.2.1.7), или инулаза – фермент, гидролизующий инулин с образованием фруктозы. Инулаза обнаружена в высших растениях, содержащих большое количество инулина, и в плесневых грибах.

Гемицеллюлазы – группа ферментов, гидролизующих различные гемицеллюлозы, которые содержатся в прорастающих семенах и плесневых грибах. Например, ксиланаза (КФ 3.2.1.32) гидролизует ксиланы до ксилозы.

Протопектиназа и полигалактуроназа (пектиназа) – ферменты, расщепляющие пектиновые вещества.

Протопектиназа – фермент, расщепляющий связи между метоксилированной полигалактуроновой кислотой арабаном и галактаном. Метоксилированная полигалактуроновая кислота (растворимый пектин) гидролизуется пектинэстеразой до метилового спирта и полигалактуроновой кислоты.

Полигалактуроназа катализирует гидролиз полигалактуроновой кислоты, она характерна для бактерий и плесневых грибов, в высших растениях встречается редко (пока обнаружена только в плодах томатов). Плесневые грибы используются для получения препаратов данных каких?? ферментов, которые используются в пищевой промышленности для осветления фруктовых соков, плодовых и виноградных вин, содержащих большое количество растворимого пектина.

Протеазы (протеолитические ферменты) – это ферменты, катализирующие гидролиз белков, полипептидов, олигопептидов. Подразделяются на протеиназы (полипептидазы), осуществляющие гидролиз белков и высокомолекулярных полипептидов и пептидазы, которые расщепляют низкомолекулярные пептиды (тетра-, три- и дипептиды).

По воздействию на конкретные участки пептидной цепи протеолитические ферменты делятся на эндопептидазы (действуют на участки цепи, расположенные далеко от концов цепи) и экзопептидазы (отщепляют концевые аминокислоты). Примерами эндопептидаз Являются трипсин, пепсин, примерами экзопептидаз – карбокси- и аминопептидазы.

В зависимости от строения активного центра протеолитических ферментов выделяютследующие протеиназы:

- сериновые, содержащие в активном центре серин (трипсин, химотрипсин);

- тиоловые, содержащие в активном центре цистеин (катепсин В);

- кислые, содержащие в активном центре две –СООН-группы (пепсин, катепсин Д).

Протеолитические ферменты подразделяются на ферменты желудочно-кишечного тракта, тканевые и бактериальные.

Дезамидазы (амидазы) – гидролазы, катализирующие процессы дезаминирования амидов кислот с образованием NН3 и кислоты. К амидазам относятся аргиназа, уреаза, аспарагиназа, глутаминаза. Аргиназа – фермент печени – катализирует гидролиз аргинина с образованием мочевины и орнитина. Уреаза – фермент, катализирующий гидролиз мочевины с образованием NН3 и СО2. Аспарагиназа дезаминирует аспарагин, глутаминаза – глутамин.

Дезаминазы катализируют процессы дезаминирования азотистых оснований (например, аденин, гуанин) с образованием спиртов и аммиака. Гуаназа катализирует дезаминирование гуанина.

Лиазы

Лиазы (десмолазы) – ферменты, отщепляющие группы от субстратов по негидролитическому механизму с образованием двойных связей без участия энергии, выделяющейся при гидролизе АТФ:

X Y

| |

C– C ® X – Y + C = C

К ним относятся ферменты, действующие на связи С–С, С–О, С–N,
С–S и С–галоид. При удалении веществ к названию фермента прибавляется приставкка де-, например: при удалении Н2О – дегидратаза, при удалении CO2 – декарбоксилаза. Если происходит присоединение веществ, то ферменты называются карбоксилаза и декарбоксилаза соответственно.

К лиазам относится фермент рибулозодифосфат-карбоксилаза
(КФ 4.1.1.39), играющий важную роль в процессе фотосинтеза и рпеобразующий одну молекулу пентозы в две молекулы триозы:

СН2ОРО32- COO-

| |

C=O 2 HCOH

| + HCO3- (или СО2) ферментMg2+ | + H+

(HCOH)2 CH2OPO3

|

CH2OPO32-

рибулозодифосфат (пентоза) триоза

Молекула рибулозодифосфат-карбоксилазы включает 16 субъединиц: восемь больших субъединиц, образующих активный центр, синтезируются в хлоропласте, восемь малых – синтезируются в цитоплазме, транспортируются через мембрану хлоропласта и соединяются с большими субъединицами.

В листьях растений содержание рибулозодифосфат-карбоксилазы составляет в среднем 16 % от общей массы белка, молекулярная масса – в среднем 550 000.

Изомеразы и мутазы

Изомеразы – ферменты, катализирующие взаимопревращения оптических, геометрических и позиционных изомеров.

К изомеразам относятся цис-транс-изомеразы, например:

ретинальизомераза

Транс-ретиналь 11-цис-ретиналь

Подклассом изомераз являются изомеразы, катализирующие взаимопревращения альдоз и кетоз.

Мутазы обеспечивают внутримолекулярный перенос атомных группировок без образования изомера.

Лигазы

Лигазы (от лат. ligare – связывать), или синтетазы – ферменты, катализирующие соединение двух простых молекул в более сложные, сопряженное с распадом АТФ. При составлении названия фермента к названию продукта реакции добавляется окончание -синтетаза. К данному классу относятся ферменты, катализирующие реакции, в ходе которых образуются связи С–О, С–S, C–N, C–C.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.