ПОЗНАВАТЕЛЬНОЕ Сила воли ведет к действию, а позитивные действия формируют позитивное отношение Как определить диапазон голоса - ваш вокал
Игровые автоматы с быстрым выводом Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими Целительная привычка Как самому избавиться от обидчивости Противоречивые взгляды на качества, присущие мужчинам Тренинг уверенности в себе Вкуснейший "Салат из свеклы с чесноком" Натюрморт и его изобразительные возможности Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д. Как научиться брать на себя ответственность Зачем нужны границы в отношениях с детьми? Световозвращающие элементы на детской одежде Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия Как слышать голос Бога Классификация ожирения по ИМТ (ВОЗ) Глава 3. Завет мужчины с женщиной
Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д. Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. | ФИЗИОЛОГИЯ СЛУХОВОГО АНАЛИЗАТОРА Слуховой анализатор — второй по значению дистантный анализатор человека. Именно слух играет крайне важную роль для человека в связи с возникновением членораздельной речи. Его специфическим адекватным раздражителем является звук — постоянный спутник окружающей нас среды. Человеческое ухо обнаруживает чувствительность к звуковцм раздражителям даже минимальной силы и выполняет исключительно важные биологические функции в жизнедеятельности человека; наряду с этим оно регулирует состояние равновесия тела в пространстве. Слуховое ощущение осуществляется суммированием двух процессов, к которым относятся: 1) проведение звуков через наружное и среднее ухо или кости черепа; 2) восприятие звуков нервно-чувствительным рецептором слухового анализатора — кортиевым органом. Как уже было сказано, орган слуха представляет собой сложный механизм, который включает звукопроводящий и звуковос-принимающий аппараты. Звукопроводящий аппарат органа слуха осуществляет звуко-проведение — доставку звуковых колебаний к нервно-чувствительным элементам кортиева органа. Звукопроводящую систему образуют наружное ухо (ушная раковина, наружный слуховой проход), среднее ухо (барабанная полость, барабанная перепонка, цепь слуховых косточек, евстахиева труба, сосцевидный отросток) и жидкостные среды внутреннего уха (эндолимфа, перилимфа). Звуковоспринимающий аппарат органа слуха, согласно учению И. П. Павлова об органах чувств как об анализаторах, собственно и представляет собой звуковой анализатор, начинающийся нерв-но-рецепторным образованием кортиева органа и состоящий из периферической части или нервного рецептора, проводникового нервного слухового тракта и коркового центрального отдела, локализующегося в коре головного мозга, где осуществляется высший анализ и синтез звуковых сигналов. Он представлен кортиевым органом, спиральным нервным узлом, улитковой ветвью слухового нерва, нервными проводниками и слуховыми центрами, а также слуховой зоной в корковом отделе звукового анализатора, находящейся в височной доле головного мозга. В рецепторном аппарате звуковоспринимающей системы происходит трансформация механических звуковых колебаний в фи- зиологический нервный процесс. В результате образуется поток нервных слуховых импульсов, поступающих по проводящим путям в слуховую зону коры головного мозга, что и обусловливает возникновение слуховых ощущений под воздействием звуковых колебаний на орган слуха. В функциональном отношении звукопроводящий и звуковос-принимающий аппараты органа слуха тесно связаны между собой, и нарушения анатомической структуры и функции каждого из них быстро сказываются на слуховой чувствительности. В связи с этим различного рода дефекты и травмы в области наружного слухового прохода, барабанной перепонки, системы слуховых косточек, овального или круглого окон, жидкостей лабиринта, спирального нервного узла, улитковой ветви слухового нерва, проводящих нервных слуховых путей и слуховых центров, а также слуховой зоны коры головного мозга могут обусловить нарушение слуха. Функциональное значение обеих этих систем весьма велико, что наглядно проявляется при поражениях органа слуха звукопроводящего или звуковоспринимающего характера. Знание анатомической структуры, физиологической характеристики и функционального назначения звукопроводящего и звуковоспринимающего аппаратов чрезвычайно важно для практики сурдологии и сурдопедагогики. Правильное определение локализации поражения служит основанием для поиска целесообразных методов компенсации нарушенной слуховой способности и выбора методов обучения лиц, страдающих тугоухостью либо звукопроводящего, либо звуковоспринимающего, либо смешанного типа. Звукопроводящий аппарат Ушная раковина собирает, улавливает и направляет звуки, осуществляя роль коллектора звуковых волн. Наряду с этим она принимает участие в определении направления звука (ототопика). Особенно хорошо эта функция развита у животных в связи с их способностью двигать ушными раковинами; у человека она сравнительно ослаблена и потому имеет меньшее значение. Наружный слуховой проход проводит звуки в направлении к барабанной перепонке. Ширина его просвета не оказывает заметного влияния на степень слуховой чувствительности. Наряду с этим полное заращение (атрезия) наружного слухового прохода или закрытие его инородным телом или серной пробкой обусловливает значительную степень тугоухости в связи с возникновением механических препятствий для прохождения звуковых волн к барабанной перепонке. Звуковые волны, достигнув барабанной перепонки, вызывают ее колебания и вместе с тем колебания всей цепи слуховых косто- чек, так как барабанная перепонка тесно связана с наружной из них — молоточком. Под влиянием колебаний звукопроводящей системы подножная пластинка стремени (внутренняя слуховая косточка, которой закрыто овальное окно) то втягивается в овальное окно, то выпячивается из него. В результате происходят колебания внутрилабиринтных жидкостей (эндолимфы и перилимфы), а вместе с ними и основной мембраны ушного лабиринта. Колебания последней передаются на нервно-рецепторный аппарат — кортиев орган, волоски которого соприкасаются с нависающей над ними покровной перепонкой. Таким образом происходит трансформация физической энергии в виде механических колебаний в физиологический нервный процесс в виде потока слуховых нервных импульсов, идущих по слуховому тракту в кору головного мозга, что и обусловливает возникновение слуховых ощущений. Движение слуховых косточек среднего уха осуществляется по принципу неравноплечного рычага, производящего большие экскурсии на одной стороне и малые — на другой. В результате рычажной системы происходит уменьшение размаха колебаний, а также изменение величины их силы, что способствует предохранению внутреннего уха от влияния резких звуков высокой интенсивности. Система среднего уха является самой важной составной частью звукопроводящего аппарата. Она обладает способностью передавать звуковые колебания внутреннему уху без искажений, значительно увеличивая звуковое давление на площадь овального окна. Указанное обстоятельство осуществляется за счет функционирования трансформационного аппарата среднего уха, который преобразует звуковое давление, падающее на барабанную перепонку, концентрируя его на меньшей в 15 — 20 раз площади овального окна. Состояние звукопроводящей системы органа слуха в значительной степени зависит от режима давления в барабанной полости, который регулируется посредством евстахиевой трубы, соединяющей барабанную полость с носоглоткой. Через евстахиеву трубу, которая выполняет вентиляционную функцию и открывается при глотании и зевании, воздух поступает в полость среднего уха, благодаря чему происходит выравнивание давления в барабанной полости с внешним давлением. При нарушении проходимости евстахиевой трубы давление внутри барабанной полости понижается, что обусловливает втяжение барабанной перепонки вовнутрь. В связи с этим в результате увеличения ее сопротивления нарушается функция звукопроводящей системы и понижается слуховая чувствительность. Это понижение слуховой функции может достигать 15 —20 дБ для звуков низкочастотного спектра. В звукопроводящем механизме важную роль играет барабанная перепонка, которая превращает воздушные звуковые колебания с большой амплитудой и малой силой в колебания подножной пластинки стремени и внутрилабиринтной жидкости с малой амплитудой и большой силой. Указанная трансформация объясняется тем, что звуковая энергия, падающая на большую поверхность барабанной перепонки (55 мм2), сосредоточивается на значительно меньшей поверхности подножной пластинки стремени (3,2 мм2), вставленной в овальное окно. Одним из основных факторов, обусловливающих нормальную функцию слуха, является определенное напряжение барабанной перепонки, осуществляемое и регулируемое нервно-мышечным аппаратом барабанной полости. Барабанная перепонка имеет вогнутую форму, поэтому падающее на нее звуковое давление увеличивается. Звуки различной тональности передаются системой звукопроведения к слуховому рецептору с одинаковой силой и без искажений, так как барабанная перепонка обладает слабым собственным резонансом. Раздражение волосковых клеток кортиева органа возникает в результате колебания внутрилабиринтных жидкостей, а вместе с ними и основной мембраны, что достигается лишь при одновременных колебаниях подножной пластинки стремени и мембраны круглого окна, происходящих в разных направлениях, так как жидкость практически несжимаема. Значительная роль в функционировании данного механизма принадлежит барабанной перепонке, которая закрывает (экранирует) круглое окно и тем самым создает разность давления на лабиринтные окна, увеличивая колебания внутрилабиринтной жидкости, а также экскурсии мембраны круглого окна и подножной пластинки стремени. Система слуховых косточек (молоточек, наковальня и стремя) связана посредством сочленений, образуя подвижную цепь. Нарушение целостности этой цепи обусловливает возникновение резкой степени тугоухости. Подвижная цепь слуховых косточек обеспечивает связь между барабанной перепонкой и подножной пластинкой стремени. Из-за того, что площадь барабанной перепонки значительно больше площади подножной пластинки, цепь слуховых косточек осуществляет не только передачу звуковых колебаний, но и их преобразование (трансформацию) с выигрышем в силе. Усиление звука, происходящее при прохождении его через звукопроводящий аппарат среднего уха, достигается также благодаря механизму рычажного действия слуховых косточек. Прохождение звукового сигнала через систему среднего уха обусловливает увеличение силы звука, которое в сумме составляет 25 — 26 дБ. При чрезмерно интенсивных звуках слуховые косточки, в силу своих механических свойств и благодаря реакции прикрепляющихся к ним слуховых мышц, выполняют и защитную функцию. При воздействии на орган слуха звуков высокой интенсивности мышца, напрягающая барабанную перепонку, и стременная мышца сокращаются, в результате чего уменьшается подвижность системы слуховых косточек и ограничивается проведение звуковых колебаний к воспринимающему механизму внутреннего уха. Мышцы среднего уха, являясь антагонистами, обусловливают нормальный тонус барабанной перепонки и звукопроводящей системы слуховых косточек и, кроме того, защищают внутреннее ухо от резких звуков высокой интенсивности. Вместе с этим указанные мышцы способствуют восприятию звуков малой интенсивности. Сокращение мышцы, натягивающей барабанную перепонку, обеспечивает повышение слуховой чувствительности, в то время как сокращение стременной мышцы, наоборот, понижает слуховую функцию. Таким образом, функция слуховых мышц сводится к защите внутреннего уха от сильных звуков и выполнению аккомодационной роли, благодаря которой при воздействии на орган слуха различных звуков создаются наиболее благоприятное напряжение и оптимальный тонус барабанной перепонки и всей звукопроводящей системы. Рефлекторные сокращения мышцы, напрягающей барабанную перепонку, и стременной мышцы являются своеобразным «автоматическим контролем громкости» для звуков большой силы. В механизме звукопроведения существуют два пути распространения звуковых колебаний к ушному лабиринту, где находится рецепторный аппарат слухового анализатора — кортиев орган. Наряду с воздушным звукопроведением, когда звуковая волна проходит через наружный слуховой проход, барабанную перепонку, систему слуховых косточек, овальное окно ушного лабиринта и жидкости внутреннего уха, существует второй путь — костное или тканевое звукопроведение. При прохождении звуковой волны по этому пути звуковые колебания распространяются по костной ткани черепа и, в частности, височной кости, проникая в улитку. Указанный механизм костного звукопроведения в определенной степени имеет место и при обычной воздушной проводимости, однако особенно он характерен при соприкосновении вибрирующего звукоизлучателя с костями черепа. При вибрации костей черепа стремя, подножная пластинка которого вставлена в овальное окно, приходит в колебание. Последнее передается в ушной лабиринт и его жидкости, в результате чего выгибается основная мембрана и приходит в движение находящийся на ней кортиев орган с чувствительными волосковыми клетками. При костном звукопроведении возможен и другой механизм распространения звуковой волны (компрессионный), когда звук поступает непосредственно с височной кости на костную стенку лабиринта, приводя ее в колебание. Последнее передается на жидкости, в результате чего возникают колебания основной мембраны и кортиева органа, при которых чувствительные волосковые клетки соприкасаются с покровной мембраной. Такой механизм наиболее характерен для проведения звуков высоких частот. Возможен еще инерционный механизм костной проводимости, который заключается в том, что при приложении вибрато-ра-звукоизлучателя к голове человека кости черепа приходят в колебание как одно целое. При этом благодаря инерции цепи слуховых косточек, свободно подвешенных на связках, кости черепа, совершая колебания — попеременно то надвигаясь на стремя, то отходя от него, создают таким образом колебания пластинки стремени в овальном окне лабиринта и вместе с этим колебания внутрилабиринтных жидкостей. Указанный механизм имеет место при воздействии на ухо звуковых колебаний низкочастотного спектра. Экспериментальным доказательством существования воздушного и костного путей звукопроведения явились опыты Дьердя Бекеши (1932), во время которых ученый, направляя одинаковые звуки одновременно по обоим указанным путям, выявил, что при наличии противоположных фаз звуковых колебаний последние взаимно гасятся. Основным механизмом проведения звуков к периферическому рецептору является воздушный путь, когда звуковые колебания распространяются через слуховой проход и систему среднего уха на овальное окно. Костный путь звукопроведения играет существенную роль при нарушении системы звукопроводящего аппарата как механизм, целесообразный для использования с целью компенсации потери слуховой чувствительности В физиологическом отношении важно, что при проведении звуковых колебаний к кортиеву органу воздушным или костным путем происходят колебания внутрилабиринтных жидкостей и выгибание основной мембраны с находящимся на ней кортиевым органом, что и обусловливает возникновение возбуждения, передаваемого по слуховому тракту в кору головного мозга. Функциональная структура звукопроводящего механизма органа слуха человека отличается большой приспособляемостью и совершенством, так как она способна реагировать на весьма слабые по силе звуковые колебания. Кроме того, звукопроводящий аппарат обладает способностью воспринимать и передавать звуковые колебания, превышающие пороговую силу звука в тысячу миллиардов раз, и разлагать сложный звук на составные элементы, производя его первичный анализ. |