МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Оси и плоскости тела человека Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Общая постановка транспортной задачи.





Транспортная задача является одной из важнейших частных задач линейного программирования. Название свое задача получила потому, что впервые была сформулирована и поставлена для решения вопроса о наиболее рациональном планировании перевозок на транспорте. Название это условно, так как с ее помощью можно решать разнообразные задачи из различных отраслей производства и не обязательно связанных с перемещением. Методы решения транспортной задачи широко применяют на автомобильном, железнодорожном и других видах транспорта для планирования перевозок различных грузов. Это объясняется их простотой и экономическим эффектом, который они дают. Планы перевозок, разработанные на основе алгоритма транспортной задачи, как правило, на 12—18% экономичнее планов, составленных без применения математических методов.

В лесной, целлюлозно-бумажной и деревообрабатывающей промышленности транспортирование составляет значительную часть производственного процесса: трелевка древесины, вывозка на промежуточные и нижние склады, доставка па деревообрабатывающие предприятия, междуцеховые и внутрицеховые перемещения на нижних складах и так далее. Транспортные расходы занимают значительный удельный вес в общей структуре лесозаготовок, вот почему задача оптимального планирования работы транспорта является одной из основных задач, решаемых методами математического программирования.

Классическая транспортная задача линейного программирования — это задача о наиболее экономичном плане перевозок однородных или взаимозаменяемых грузов из пунктов производства в пункты потребления или, что тоже самое, это задача об оптимальном прикреплении потребителей к поставщикам.

Сформулируем транспортную задачу.

В лесозаготовительном объединении имеются А1, А2, ... ..., Аm лесозаготовительных предприятий {ЛЗП), вырабатывающих технологическую щепу в объеме Q1, Q2, .... Qm тысяч кубометров в год. Технологическая щепа должна быть доставлена потребителям (ЦБК) В1, В2, ….., Вn, имеющим соответственно объемы потребления Y1, Y2. … Yn тысяч ку­бометров в год. Стоимость доставки щепы с каждого ЛЗП каждому потребителю определяется матрицей стоимостей:

(1.1)

Объем выработки щепы всеми ЛЗП равен объему потребления всеми ЦБК:

(1.2)

или

(1.3)

Необходимо определить такое распределение доставки щепы от ЛЗП к потребителям, чтобы общая стоимость транспортных затрат была минимальной:

(1.4)

 

или

(1.5)

При этом необходимо, чтобы соблюдались условия:

1. Суммарный объем щепы, вывозимой с каждого ЛЗП потребителям, должен равняться его мощности:

(1.6)

или

(1.7)

где i=1,2,……m.

2. Суммарный объем щепы, доставляемой на каждый ЦБК от ЛЗП, должен равняться его потребности:

(1.8)

или

(1.9)

где j=1,2,……n.

3.Объемы доставки щепы не могут быть отрицательными, но могут равняться нулю:

(1.10)

4.Уже известное (1.3)

Математически сформулированная транспортная задача ли­нейного программирования имеет m+n+2 уравнений, и m·n+1 неизвестных.

Кратко транспортная задача линейного программирования записывается в следующем виде.

Найти минимум функции

(1.11)

При заданных условиях:

(1.12)

(1.13)

(1.14)

(1.15)

Функция называется целевой функцией или

функционалом. Решение задачи сводится к нахождению всех значений X, при которых целевая функция будет минимальной.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.