МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Оси и плоскости тела человека Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Решение матричной игры в смешанных стратегиях





 

Игра, заданная некоторой матрицей, может не иметь седловой точки.

Пример 3Рассмотрим платёжную матрицу

Для первого игрока находим максимин

Для второго игрока находим минимакс

Следовательно, минимакс и максимин не совпадают, т.е. положения равновесия в чистых стратегиях не существует.

Если среди чистых стратегий решения игры нет, то для его нахождения используются смешанные стратегии. Справедлива теорема.

Теорема Неймана(основная теорема теории игр)Каждая конечная игра имеет,по крайней мере, одно оптимальное решение, возможно среди смешанных стратегий.

При этом если - платежная матрица, - оптимальная смешанная стратегия первого игрока, a - второго, то число

является ценой игры.

Определение.Если чистая стратегия входит в смешанную с ненулевой вероятностью, то она называется активной

Активные стратегии обладают свойством, выражаемым следующей теоремой.

Теорема(об активных стратегиях) Если один из игроков придерживается своей оптимальной смешанной стратегии, то выигрыш остаётся неизменным и равным цене игры , если второй игрок не выходит за пределы своих активных стратегий.

Игра с природой

 

Кроме антогонистических рассматривают так называемые неантогонистические игры. В этом случае предполагают, что действия противника не носят характер строгого противостояния. Его интересы могут быть разными и в общем случае не совпадающими с нашими, однако они не являются «злонамеренно» направленными против нас. Простейшим примером такой ситуации является следующая.

Предположим, что известна (в общем случае смешанная) стратегия применяемая одним из игроков. Например, из опыта предыдущих наблюдений. Этот игрок использует свою стратегию вне зависимости от нашей стратегии. Такую игру принято называть игрой с природой. Природа как бы не имея в общем желания нам навредить действует по своим законам.

Пусть торговое предприятие имеет т стратегий: и имеется n возможных состояний природы: . Так как природа не является заинтересованной стороной, исход любого сочетания поведения сторон можно оценить выигрышем первой стороны для каждой пары стратегий и . Все показатели игры заданы платежной матрицей размерности

По платежной матрице можно принять ряд решений. Например, оценить возможные исходы: минимальный выигрыш

т.е. наименьшая из величин в каждой -й строке как пессимистическая оценка; максимальный выигрыш – то наилучшее, что дает выбор -го варианта

При анализе «игры с природой» вводится показатель, по которому оценивают, насколько то или иное состояние «природы» влияет на исход ситуации. Этот показатель называют риском.

Риск при пользовании стратегией и состоянии «природы» оценивается разностью между максимально возможным выигрышем при данном состоянии «природы» и выигрышем при выбранной стратегии :

Исходя из этого определения можно оценить максимальный риск каждого решения:

Решения могут приниматься по результатам анализа ряда критериев.

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.