МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Алгоритм нахождения остова минимального веса во взвешенном графе





Содержание

Введение
1 Теоретическая часть
1.1Основные понятия теории графов
1.2 Представление графов  
1.3 Алгоритм нахождения остова минимального веса во взвешенном графе  
1.4 Контрольная задача моделирования
1.5 Задача 1
1.6 Задача 2
1.7 Задача 3
1.8 Задача 4
1.9 Задача 5
Заключение
Список используемой литературы

 


Введение

В настоящее время исследования в областях, традиционно относящихся к математике, занимают все более заметное место. Проблема выбора оптимального варианта решения относится к числу наиболее актуальных технико-экономиче­ских проблем.

Развитие теории графов в основном обязано большому числу всевозмож­ных приложений. По-видимому, из всех математических объектов графы зани­мают одно из первых мест в качестве формальных моделей реальных систем.

Графы нашли применение практически во всех отраслях научных знаний: физике, биологии, химии, математике, истории, лингвистике, социальных науках, технике и т.п. Наибольшей популярностью теоретико-графовые модели исполь­зуются при исследовании коммуникационных сетей, систем информатики, хими­ческих и генетических структур, электрических цепей и других систем сетевой структуры.

Цель курсовой работы заключается в закреплении практических умений и навыков в нахождении остова минимального веса с помощью алгоритма Краскала, в разработке программы на языке Delphi для аналитического и графического решений нашей поставленной задачи. Использование компьютерных технологий для решения данных задач сокращает усилия и время человека, а это не мало важно в настоящие время.

В курсовом проекте в разделе «Постановка задачи» рассматривается тео­ретический материал по теме «Графовые модели. Остов минимального веса», в разделе «Алгоритм нахождения» рассматриваются алгоритмы нахождения «Ос­това минимального веса», в разделе «Инструментальные программные средства» выбираются инструментальные средства для разработки программного продукта, в разделе «Операционная среда моделирования» определятся интерфейс программного продукта, в разделе «Контрольная задача моделирования» формулиру­ется задача для ее решения вручную и с помощью программного продукта.


Теоретическая часть

Основные понятия теории графов

Графом называется алгоритмическая модель, состоящая из множества вершин (узлов) v и соединяющих их ребер e. Ребро - неупорядоченная пара вер­шин графа.

Ребра называются смежными, если они имеют общую вершину. Вершины называются смежными, если есть ребро их соединяющее. Ребро, которое соеди­няет вершины, называется инцидентным этим вершинам, а вершины – инцидент­ные этому ребру.

Граф G’(v’,e’) является остовом минимального веса графа G(v,e), если v’=v и e’ – есть подмножество ребер минимального веса и количества, соединяющих все вершины. Остовом минимального веса может являться сеть минимальной стоимости, в матрице соединения которой cij=cji.

Граф G=<v, e> называется ориентированным (орграфом), если найдется дуга (a,b)ÎR такая, что (b,a)ÏR.

Если же отношение R симметрично, то есть из (a,b)ÎR следует (b,a)ÎR, то граф G называется неориентированным (неорграфом).

Связный граф - граф, у которого для любых двух различных вершин суще­ствует цепь (последовательность смежных вершин), соединяющая их.



Для решения данной задачи моделирования будет использован неориенти­рованный связный граф.

 

Представление графов

 

Существует четыре базовых представлений графов в памяти машины: мат­рица инцидентности, матрица смежности, матрица списков смежности и связан­ные списки смежности. Они различаются скоростью выполнения операций над элементами представления и объемом занимаемой памяти.

Для решения поставленной задачи моделирования больше всего подходит представление графов в памяти машины в виде матрицы смежности, а именно матрица весов.

Матрица смежности - матрица размером , элементы которой равны 1, если i-я вершина смежна с j-ой, и 0 в противном случае.

Матрица смежности является симметричной и достаточно просто мо­жет использоваться для ввода и обработки на ЭВМ. Для случая взвешенного графа вместо 1 используется значение весовой функции, и такая матрица называ­ется матрицей весов. В поставленной задаче будем использовать матрицу весов.

 

Алгоритм нахождения остова минимального веса во взвешенном графе

Для нахождения остова минимального веса с помощью метода Краскала нужно выполнить следующие шаги:

1.Помечают вершину начала построения остова. Среди ребер, инци­дентных помеченной вершине, находят ребро минимального веса для остова. По­мечают новую вершину, инцидентную этому ребру. Вершина новая, если к ней ранее не обращались.

2.Смотрят, все ли вершины помечены. Если да, то заканчивают по­иск, если нет, то переходят к шагу 3.

3.Среди ребер, инцидентных помеченным вершинам, за исключением ребер остова и ребер, образующих в остове цикл, находят ребро минимального веса для остова. Помечают новую вершину, инцидентную этому ребру, и перехо­дят к шагу 2.

4.При изменении вершины начала конфигурация остова минимального веса не измениться. Она может измениться при наличии в графе ребер одинако­вого минимального веса.






©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.