МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

ФУНКЦИЯ ЛАПЛАСА. ЕЕ СВОЙСТВА





2.1. Функция (интеграл вероятностей) Лапласаимеет вид:

 

 

График функции Лапласа приведен на рис.5.

Функция Ф(х) табулирована (см. табл. 1 приложений). Для применения этой таблицы нужно знать свойства функции Лапласа:

1) Функция Ф(х) нечетная: Ф(-х)= -Ф(х).

2) Функция Ф(х) монотонно возрастающая.

3) Ф(0)=0.

4) Ф()=0,5; Ф()=-0,5. На практике можно считать, что при х³5 функция Ф(х)=0,5; при х£-5 функция Ф(х)=-0,5.

 

2.2.Существует другие формы функции Лапласа:

 

и

 

В отличие от этих форм функция Ф(х) называется стандартной или нормированной функцией Лапласа. Она связана с другими формами соотношениями:

 
 

ПРИМЕР 2.Непрерывная случайная величина Х имеет нормальный закон распределения с параметрами: m=3, s=4. Найти вероятность того, что в результате испытания случайная величина Х: а) примет значение, заключенное в интервале (2; 6); б) примет значение, меньше 2; в) примет значение, больше 10; г) отклонится от математического ожидания на величину, не превышающую 2. Проиллюстрировать решение задачи графически.

Решение.а) Вероятность того, что нормальная случайная величина Х попадет в заданный интервал (a,b), где a=2 и b=6, равна:

Значения функции Лапласа Ф(х) определяют по таблице, приведенной в приложении, учитывая, что Ф(–х)= –Ф(х).

б) Вероятность того, что нормальная случайная величина Х примет значение меньше 2, равна:

в) Вероятность того, что нормальная случайная величина Х примет значение больше 10, равна:

г) Вероятность того, что нормальная случайная величина Х отклонится от математического ожидания на величину, меньшую d=2, равна:

С геометрической точки зрения, вычисленные вероятности численно равны заштрихованным площадям под нормальной кривой (см. рис.6).


       
 
 
   


1 5    

Рис. 6. Нормальная кривая для случайной величины Х~N(3;4)
ПРИМЕР 3.
Производится измерение диаметра вала без систематических (одного знака) ошибок. Случайные ошибки измерения подчинены нормальному закону распределения со средним квадратическим отклонением 10 мм. Найти вероятность того, что измерение будет произведено с ошибкой, не превышающей по абсолютной величине 15 мм.

Решение.Математическое ожидание случайных ошибок равно нулю m=0. Тогда вероятность того, что нормальная случайная величина Х отклонится от математического ожидания на величину, меньшую d=15, равна:

ПРИМЕР 4. Автомат изготовляет шарики. Шарик считается годным, если отклонение Х диаметра шарика от проектного размера по абсолютной величине меньше 0,7 мм. Считая, что случайная величина Х распределена нормально со средним квадратическим отклонением 0,4 мм, найти, сколько в среднем будет годных шариков среди 100 изготовленных.

Решение.Случайная величина Х - отклонение диаметра шарика от проектного размера. Математическое ожидание отклонения равно нулю, т.е. М(Х)=m=0. Тогда вероятность того, что нормальная случайная величина Х отклонится от математического ожидания на величину, меньшую d=0,7, равна:

Отсюда следует, что примерно 92 шарика из 100 окажутся годными.

 

ПРИМЕР 5.Доказать правило «3s».

Решение.Вероятность того, что нормальная случайная величина Х отклонится от математического ожидания на величину, меньшую d=3s, равна:

ПРИМЕР 6.Случайная величина Х распределена нормально с математическим ожиданием m=10. Вероятность попадания Х в интервал (10, 20) равна 0,3. Чему равна вероятность попадания Х в интервал (0, 10)?



Решение.Нормальная кривая симметрична относительно прямой х=m=10, поэтому площади, ограниченные сверху нормальной кривой и снизу интервалами (0, 10) и (10, 20), равны между собой. Так как площади численно равны вероятностям попадания Х в соответствующий интервал, то:

 

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.