МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Пример решение задачи №2: Построение и исследование эконометрической модели магазина в виде линейной троичной регрессии





 

Постановка задачи №2

 

Торговая компания располагает семью магазинами типа«Промтовары»(для справки: этот тип в соответствии с /2, ГОСТ/ -предприятие розничной торговли, реализующее непродовольственные товары узкого ассортимента, основные из которых швейные и трикотажные изделия, обувь, галантерея, парфюмерия торговой площадью от 18 м2).

Компании планирует построить 8-й магазин с торговой площадью 1100 м2, для чего она разрабатывает бизнес-план и, в частности, эконометрическую модель магазина.

На этой модели специалисты должны исследовать зависимость объема продаж (у - в десятках тыс.руб./день) от размера торговой площади (х1 – в сотнях м2) и от размера паркинга (х2 в десятках автомашин)

Единицы измерения выбраны с учетом достоверности данных и удобства вычислений.

 

Решение задачи №2

 

1) Нанести в координатах х2у точки на плоскость (построить корреляционное поле).

Решение. Для наглядности выберем наши данные из таблиц 1.2-1.7. Из рисунке 3.1 видно, что прямая линия хорошо аппроксимирует связь между у и х2. Эта связь прямая и очень тесная.

2) Записать для своего варианта матрицу Х значений объясняющих переменных (матрицу плана).

Решение. См.среднюю матрицу в п. 4.

3) Записать транспонированную матрицу плана .

Решение. См. левую матрицу в п. 4.

 

у              
             
               
             
               
             
               
             
               
             
              х2
   

 

Рисунок 3.1

 

2.4. Найти произведение матриц .

Решение.

 

5) Найти обратную матрицу ( )-1.

Решение. Для краткости введем обозначение: А= . требуется найти обратную матрицу А-1. Используем формулу:

 

 

где - определитель матрицы А,

– транспонированная матрица, составленная из алгебраических дополнений матрицы А.

 

=7×120×79+24×96×21+21×96×24-21×120×21-96×96×7-79×24×24=192.

Находим алгебраические дополнения:

А11 = 120 × 79 – 96 × 96 =264; А12 = -(24 × 79 – 96 × 21) = 120;
А13 = 24 × 96 – 120 × 21 = -216; А21 = -(24 × 79 – 21 × 96) = 120;
А22 = 7 × 79 - 21 × 21 = 112; А23 = -(7 × 96 – 24 × 21)= -168;
А31 = 24 × 96 – 21 × 120 = -216; А32 = -(7 × 96 – 21 × 24) = -168;
А33 = 7 × 120 – 24 × 24 = 264.  

 

Обратная матрица:

 

 

Проверка. Если расчеты верны, то должно выполниться равенство:

А А-1 = Е.

Для повышения точности множитель 1/192 введем отдельно.

 

Равенство выполнено, значит, расчет обратной матрицы выполнен верно.

 

6) Найти произведение матриц .

Решение.

7) Найти уравнение регрессии Y по Х1 и Х2 в форме =b0+ b1 х1 + + b2х2 методом наименьших квадратов путем умножения матрицы ( )-1 на матрицу , т.е. рассчитать коэффициенты регрессии по формуле b=( )-1 .

Решение.

Итак, ответ: b0 = -0,88; b1 = 0,50; b2 = 1,63. Уравнение множественной регрессии имеет вид: = -0,88 + 0,50x1 + 1,63x2.

8) Объяснить смысл изменения значения коэффициента регрессии b1.



Решение. В задаче №1 значение b1=1,54, а теперь его значение снизилось до b1=0,50. Это связано с тем, что на объем продаж помимо торговой площади теперь влияет учитываемая площадь паркинга.

9) Рассчитать значения коэффициентов эластичности для обоих факторов и сравнить влияние каждого из них на средний объем продаж.

Решение. Коэффициент эластичности в общем случае есть функция объясняющей переменной, например:

Если то при увеличении х1 от среднего на 1% объем продаж возрастет на 0,30%. Аналогично при увеличении х2 от среднего на 1% объем продаж возрастет на 0,86%.

10) Оценить аналитически прогнозное среднее значение объема продаж для проектируемого магазина "СИ" с торговой площадью х1=11 (1100 м2) и паркинговой площадью х2 = 8 (80 автомашин).

Решение. Объем продаж рассчитаем по уравнению регрессии:

 

 

= -0,88 + 0,50 × 11 + 1,63 × 8 = 17,66.

 

11.а) Найти 95%-ный доверительный интервал для среднего прогнозного значения объема продаж магазина "СИ".

Решение. По условию нужно оценить значение Мх(Y), где вектор переменных . Выборочной оценкой условного МO Мх(Y) является значение регрессии (11, 8) = 17,66. Для построения доверительного интервала для Мх(Y) нужно знать дисперсию оценки и дисперсию возмущений s2:

Для удобства вычислений составим таблицу 3.1.

Таблица 3.1

i xi1 xi2 yi ei
1,25 0,75 0,56
2,88 0,12 0,02
3.38 0,62 0,39
5.51 -0,51 0,26
6,01 -1,01 1,02
8,14 -1,14 1,30
12,90 1,10 1,21
40,07 -0,07 4,76

 

На основе табличных данных:

 

 

По табл. П2 находим критическое значение статистики Стьюдента t0,95; 7-2-1=5 = 2,78. Полуинтервал D = t0,95; 5∙ = 2,78 × 1,46 = 4,05.

Нижняя граница интервала: min = Xo - D = 17,66 - 4,05 = 13,61.

Верхняя граница интервала: mах = Xo + D = 17,66 + 4,05 = 21,71. Окончательно доверительный интервал для среднего прогнозного значения Xo : 13,61 £ МХo(Y) £ 21,71. Интервал большой, что объясняется слишком короткой выборкой.

 

11.б) Найти 95%-ный доверительный интервал для индивидуального прогнозного значения объема продаж магазина "СИ" .

Решение. Интервал рассчитаем по выражению:

 

 

где

Полуинтервал D = 2,78 × 1,82 = 5,06. Нижние и верхние границы интервала: min = 17,66 - 5,06 = 12,60 и max = 17,66 + 5,06 = 22,72. Окончательно интервал имеет вид: 12,60 £ £ 22,72. Как и следовало ожидать, данный индивидуальный интервал больше предыдущего среднего.

 

12) Проверить значимость коэффициентов регрессии.

Решение. Стандартная ошибка рассчитывается по формуле:

 

где выражение под корнем есть диагональный элемент матрицы -1.

Отсюда: sb1 = 1,09 = 1,28; sb2 =1,09 = 0,83.

Так как t = çb1ç/ sb1 = 0,50/1,28 = 0,39 < t0,95;4 = 2,78, то коэффициент b1 незначим (незначимо отличается от нуля).

Так как t = çb2ç/ sb2 = 1,63/0,83 = 1,96 < t0,95;4 = 2,78, то и коэффициент b2 незначим на 5%-ном уровне.

13) Найти с надежностью 0,95 интервальные оценки коэффициентов регрессии b1 и b2 и дисперсии s2.

Решение. Интервалы коэффициентов регрессии рассчитываются по формуле: bj + t1-a,n-p-1sbj £ bj £ bj + t1-a,n-p-1sbj.

 

 

Поскольку оба коэффициента регрессии незначимы, то не имеет смысла строить для них доверительные интервалы.

14) Определить множественный коэффициент детерминации и проверить значимость уравнения регрессии на уровне a=0,05.

Решение. Коэффициент детерминации рассчитывается по формуле:

;

 

Уравнение регрессии значимо, если справедливо неравенство (критерий Фишера):

F = R2 (n-p-1)/(1- R2) p > Fa;k1;k2.

 

Отсюда F = 0,96(7-2-1)/(1-0,962)2 = 24,62 > F0,05;2;4.

Вывод: уравнение значимо.

15) Определить, существенно ли увеличилось значение коэффициента детерминации при введении в регрессию второй объясняющей переменной.

Решение. Значения коэффициентов детерминации для регрессий с одной и с двумя объясняющими переменными соответственно равны: R2 = 0,97 и R2 = 0,96. Увеличения значения не произошло. Введение второй переменной не увеличило адекватность модели.

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.