МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Зависимость между моментами силы относительно центра и относительно оси.





Пусть на тело действует приложен­ная в точке А сила (рис. 42). Проведем какую-нибудь ось z и возьмем на ней произвольную точку О. Момент силы относи­тельно центра О будет изображаться вектором перпендикуляр­ным плоскости ОАВ, причем по мо­дулю .

Рис.42

Проведем теперь через любую точку O1 на оси z плоскость ху, перпендику­лярную к оси; проектируя силу на эту плоскость, найдем .

Но треугольник О1А1В1 представляет собою проекцию треуголь­ника ОАВ на плоскость ху. Угол между плоскостями этих треуголь­ников равен углу между перпендикулярами к плоскостям, т. е. ра­вен . Тогда, по известной геометрической формуле, .

Умножая обе части этого равенства на 2 и замечая, что удвоен­ные пощади треугольников О1А1В1 и ОАВ равны соответственно и , найдем окончательно: .

Так как произведение дает проекцию вектора на ось z, то равенство можно еще представить в виде

или .

В результате мы доказали, что между моментом силы относи­тельно оси и ее моментом относительно какого-нибудь центра, лежа­щего на этой оси, существует следующая зависимость: момент силы относительно оси равен проекции на эту ось вектора, изображающего момент данной силы относительно любого центра, лежащего на оси.

 

Приведение пространственной системы сил к данному центру.

Полученные выше результаты позволяют решить задачу о приведении любой системы сил к данному центру. Эта задача, решается с помощью теоремы о параллельном переносе силы. Для переноса действующей на абсолютно твердое тело силы из точки А (рис. 43, а) в точку О прикладываем в точке О силы и . Тогда сила окажется приложенной в точке О и к ней будет присо­единена пара ( ) с моментом , что можно показать еще так, как на рис. 43, б. При этом .

Рис.43

Рассмотрим теперь твердое тело, на которое действует какая угодно система сил , ,…, (рис. 44, а). Выберем произволь­ную точку О за центр приведения и перенесем все силы системы в этот центр, присоединяя при этом соответствующие пары. Тогда на тело будет действовать система сил

.

приложенных в центре О, и система пар, моменты которых будут равны

,

Силы, приложенные в точке О, заменяются одной силой , при­ложенной в той же точке. При этом или,

.

Чтобы сложить все полученные пары, надо геометрически сло­жить векторы моментов этих пар. В результате система пар заме­нится одной парой, момент которой или,

.

Как и в случае плоской системы, величина , равная геометри­ческой сумме всех сил, называется главным вектором системы; величина , равная геометрической сумме моментов всех сил отно­сительно центра О, называется главным моментом системы отно­сительно этого центра.

 

Рис.44

 

Таким образом мы доказали следующую теорему, любая система сил, действующих на абсолютно твердое тело, при приведении к произвольно взятому центру О заменяется одной силой , равной главному вектору системы и приложенной в центре приведения О, и одной парой с моментом , равным главному моменту системы относительно центра О (рис. 44, б).

Векторы и обычно определяют аналитически, т.е. по их проекциям на оси координат.

Выражения для Rx, Ry, Rz нам известны. Проекции век­тора на оси координат будем обозначать Mx, My, Mz. По тео­реме о проекциях суммы векторов на ось будет или, . Аналогично находятся величины My и Mz.



Окончательно для определения проекций главного вектора и главного момента получаем формулы:

При этом главный вектор пространственной системы сил: R0 = ΣPi отличается от главного вектора плоской системы сил только наличием третьей компоненты, поэтому его модуль будет равен:

Главный момент пространственной системы сил: M0 = ΣM0(Pi) - это вектор, модуль которого находится аналогично:

где Mx , My , Mz - суммы моментов всех сил системы относительно соответствующих осей.

В зависимости от значений главного вектора и главного момента, а также от их взаимного расположения возможны следующие варианты приведения пространственной системы сил:

1) R0 = 0, M0 = 0 - система сил находится в равновесии;

2) R0 = 0, M0 ≠0 - система эквивалентна паре сил с моментом, равным главному моменту системы, который в этом случае не зависит от выбора центра приведения;

3) R0 ≠0, M0 = 0 - система эквивалентна равнодействующей R, равной и эквивалентной главному вектору системы R0 , линия действия которой проходит через центр приведения: R = R0, R~R0 ;

4) R0 ≠0, M0 ≠0 и R0M0 - система эквивалентна равнодействующей R, равной главному вектору системы R0 , ее линия действия проходит на расстоянии d = |M0|/ R0 от центра приведения.

5) R0 ≠ 0, M0 ≠0 и главный вектор R0 неперпендикулярен главному моменту M0 - система эквивалентна скрещивающимся силам или динаме.

При этом скрещивающимися называются силы, которые непараллельны и не лежат в одной плоскости, а динамой называется система, состоящая из силы и пары сил, плоскость которой перпендикулярна этой силе.

Динама, приложенная к твердому телу, стремится вызвать его винтовое движение, которое представляет совокупность вращательного и поступательного движений.

Примечание.

Для пространственной системы сил, как и для плоской, справедлива следующая Теорема Вариньона.

Момент равнодействующей пространственной системы сил относительно произвольного центра (оси) равен геометрической (алгебраической) сумме моментов всех сил этой системы относительно данного центра (оси).

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.