МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Равновесие при наличии трения.





Изучение равновесия тел с учетом трения сводится обычно к рассмотрению предельного положения равновесия, когда сила трения достигает своего наиболь­шего значения Fпр. При аналитическом решении задач реакцию шероховатой связи в этом случае изображают двумя составляющими N и Fпр, где . Затем составляют обычные условия равновесия статики, подставляют в них вместо Fпр величину и, решая полу­ченные уравнения, определяют искомые величины.

Пример 1.Рассмотрим тело, имеющее вертикальную плоскость симметрии (рис.28). Сечение тела этой плоскости имеет форму прямоугольника. Ширина тела равна 2a.

К телу в точке С, лежащей на оси симметрии, приложена вертикальная сила и в точке А, лежащей на расстоянии h от основания, горизонтальная сила . Реакция плоскости основания (реакция связи) приводится к нормальной реакции и силе трения . Линия действия силы неизвестна. Расстояние от точки С до линии действия силы обозначим x ( ).

Рис.28

 

Составим три уравнения равновесия:

Согласно закону Кулона , т.е. . (1)

Так как , то (2)

Проанализируем полученные результаты:

Будем увеличивать силу .

Если f<a/h, то равновесие будет иметь место до тех пор, пока сила трения не достигнет своей предельной величины, условие (1) превратится в равенство. Дальнейшее увеличение силы приведет к скольжению тела по поверхности.

Если f>a/h, то равновесие будет иметь место до тех пор, пока сила трения не достигнет величины /h, условие (2) превратится в равенство. Величина x будет равна h. Дальнейшее увеличение силы приведет к тому, что тело станет опрокидываться вокруг точки B (скольжения не будет).

Пример 2. На какое максимальное рас­стояние а может подняться человек по лестнице, приставленной к стене (рис.29)? Если вес чело­века – Р, коэффициент трения скольжения между лестницей и стеной – , между лестни­цей и полом – .

Рис.29

 

Рассматриваем равновесие лестницы с че­ловеком. Показываем силу , нормальные реак­ции и и добавляем силы трения: и . Полагаем, что чело­век находится на расстоянии , при большем значении которого начнётся движение лестницы. Состав­ляем уравнения равновесия.

Подставив значения сил трения и решив систему уравнений, получим

Теперь можно определить и угол под которым надо поставить лестницу, чтоб добраться до стены. Полагая a=l, получим, после преобразований, и .

Рис.30

 

Заметим, что если равнодействующая всех активных сил (всех кроме реакций) направлена под углом (рис.30), то нормальная реакция , а сила трения Для того, чтобы началось скольжение должно выполнятся условие . или . И так как , то . Значит угол должен быть больше угла . Следовательно, если сила действует внутри угла или конуса трения ( ), то как бы не была ве­лика эта сила, скольжение тела не произойдёт. Такое условие называется усло­вием заклинивания, самоторможения.

Мы рассмотрели скольжение твёрдых тел по поверхности. Но нередко встречается скольжение гибких тел по неплоской по­верхности. Например, нежелательное проскальзывание в ременной передаче ремня по шкиву, или троса, каната, на­мотанного на неподвижный цилиндр.

Пример 3. Пусть имеется нить, перекинутая че­рез неподвижную цилиндрическую поверх­ность (рис.31). За счёт сил трения натяже­ние левого и правого концов этой нити бу­дут различными.



Рис.31 Рис.32

 

Предположим, что нормальная реак­ция и сила трения распределяются равно­мерно по дуге контакта нити на цилиндре. Рассмотрим равновесие участка нити дли­ной . (рис.32). На левом конце этого участка натяжение , на пра­вом . Составляем уравнения равновесия, проектируя силы на оси:

Так как угол - малая величина, то полагаем С учётом этого из уравнений находим и, так как , имеем или . Интегрируя, получим . Или

Этот результат называется формулой Эйлера.

Например, если нить перекинута через неподвижный шкив и , а ко­эффициент трения f=0,2, то отношение натяжений . А, обернув цилиндр один раз ( ), то есть можно удержать груз на другом конце нити силой почти в три раза меньшей веса тела.

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.