МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Лекция 4 Механические колебания и волны в упругих средах.





План

1. Гармонические механические колебания. Дифференциальное уравнение затухающих колебаний и его решение.

2. Уравнение бегущей волны. Длина волны и волновое число. Волновое уравнение. Когерентность.

Тезисы

1. Из произвольной точки О, выбранной на оси х, под углом j, равным начальной фазе колебания, откла­дывается вектор А, модуль которого равен амплитуде А рассматриваемого колебания (рис. 199). Если этот вектор привести во вращение с угловой скоростью w0, то про­екция конца вектора будет перемещаться по оси х и принимать значения от -A до +А, а колеблющаяся величина будет из­меняться со временем по закону

Дифференциальное уравнение свобод­ных затухающих колебаний линейной системы , где s — колеблющаяся величина, описы­вающая тот или иной физический про­цесс, d = const — коэффициент затухания, w0 — циклическая частота свободных незатухающихколебаний той же колебатель­ной системы, т. е. при d=0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы. Решение этого уравнения , где - амплитуда затухающих колебаний с пери­одом

Если A(t) и A(t+T)— амплитуды двух последовательных колебаний, соответству­ющих моментам времени, отличающимся на период, то отношение называется декрементом затухания, а его логарифм - логарифмическим декрементом затуха­ния; здесь Ne - число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания — постоянная для данной колебательной системы величина.

Промежуток времени, в течение которого амплитуда за­тухающих колебаний уменьшается в е раз, называется временем релаксации . Добротно­сть колебательной системы при малых значениях лога­рифмического декремента равна . До­бротность пропорциональна числу колеба­ний Ne, совершаемых системой за время релаксации. При увели­чении коэффициента затухания d колебательный процесс станет апериодическим. Пружинный маятник колеблется по закону с частотой . Добротность пружинного маятника , где r – коэффициент сопротивления.

Для пружинного маятника дифференциальное уравнение вынужденных колебаний , а его решение , что соответствует линейному неоднородному диффе­ренциальному уравнению

2. Плоская волна: колебания носят гармонический ха­рактер, а ось х совпадает с направлением распространения волны. В дан­ном случае волновые поверхности перпен­дикулярны оси х, смещение x будет зависеть только от х и t, т. е. x = x(х, t). Уравнение бегу­щей волны есть не только периодическая функция времени, но и периодическая функция координаты . Если плоская волна распро­страняется в противоположном направлении, то в формуле будет знак +. В общем случае уравнение плоской волны, распространяющейся вдоль поло­жительного направления оси х в среде, не поглощающей энергию, имеет вид . Для характеристики волн использует­ся волновое число (число длин волн, укладываемых на отрезке длиной 2 ). .

Тогда уравнение плоской волны можно записать еще и в виде . Уравнение волны, распространяющейся вдоль отрицательного направления оси х, будет отличаться знаком kx.

Скорость распростране­ния волны есть скорость перемещения фазы волны, ее называют фазовой скоростью . Урав­нение сферической волны (волны, волновые поверхности которой имеют вид кон­центрических сфер) , где r — расстояние от центра волны до рассматриваемой точки среды.



Распространение волн в однородной изотропной среде в общем случае описы­вается волновым уравнением — диффе­ренциальным уравнением в частных про­изводных или , где фазовая скорость, - оператор Лапласа. Для плоской волны, распространяющейся вдоль оси х, волновое уравнение имеет вид .






©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.