МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Существует несколько классификаций синапсов.





1. По локализации:

1) центральные синапсы;

2) периферические синапсы.

Центральные синапсы лежат в пределах центральной нервной системы, а также находятся в ганглиях вегетативной нервной системы. Центральные синапсы – это контакты между двумя нервными клетками, причем эти контакты неоднородны и в зависимости от того, на какой структуре первый нейрон образует синапс со вторым нейроном, различают:

1) аксосоматический, образованный аксоном одного нейрона и телом другого нейрона;

2) аксодендритный, образованный аксоном одного нейрона и дендритом другого;

3) аксоаксональный (аксон первого нейрона образует синапс на аксоне второго нейрона);

4) дендродентритный (дендрит первого нейрона образует синапс на дендрите второго нейрона).

Различают несколько видов периферических синапсов:

1) мионевральный (нервно-мышечный), образованный аксоном мотонейрона и мышечной клеткой;

2) нервно-эпителиальный, образованный аксоном нейрона и секреторной клеткой.

2. Функциональная классификация синапсов:

1) возбуждающие синапсы;

2) тормозящие синапсы.

3. По механизмам передачи возбуждения в синапсах:

1) химические;

2) электрические.

Особенность химических синапсов заключается в том, что передача возбуждения осуществляется при помощи особой группы химических веществ – медиаторов.

Различают несколько видов химических синапсов:

1) холинэргические. В них происходит передача возбуждения при помощи ацетилхолина;

2) адренэргические. В них происходит передача возбуждения при помощи трех катехоламинов;

3) дофаминэргические. В них происходит передача возбуждения при помощи дофамина;

4) гистаминэргические. В них происходит передача возбуждения при помощи гистамина;

5) ГАМКэргические. В них происходит передача возбуждения при помощи гаммааминомасляной кислоты, т. е. развивается процесс торможения.

Особенность электрических синапсов заключается в том, что передача возбуждения осуществляется при помощи электрического тока. Таких синапсов в организме обнаружено мало.

Синапсы имеют ряд физиологических свойств:

1) клапанное свойство синапсов, т. е. способность передавать возбуждение только в одном направлении с пресинаптической мембраны на постсинаптическую;

2) свойство синаптической задержки, связанное с тем, что скорость передачи возбуждения снижается;

3) свойство потенциации (каждый последующий импульс будет проводиться с меньшей постсинаптической задержкой). Это связано с тем, что на пресинаптической и постсинаптической мембране остается медиатор от проведения предыдущего импульса;

4) низкая лабильность синапса (100–150 имульсов в секунду).

См. вопрос 26.

Синапс - это специализированная структура, которая обеспечивает передачу возбуждения с одной возбудимой структуры на другую. Термин "синапс" введен Ч. Шеррингтоном и означает "сведение", "соединение", "застежка".

Классификация синапсов.

Синапсы можно классифицировать по:

1) их местоположению и принадлежности соответствующим структурам:

периферические (нервно-мышечные, нейро-секреторные, рецеп-торнонейрональные);

центральные (аксо-соматические, аксо-дендритные, аксо-аксо-нальные, сомато-девдритные, сомато-соматические);

2) знаку их действия - возбуждающие и тормозящие;



3) способу передачи сигналов - химические, электрические, смешанные.

4) медиатору, с помощью которого осуществляется передача - холинергические, адренергические, серотонинергические, глицинергические и т. д.

 

№ 35 Приятие о медиаторных системах, виды медиаторов.

Медиаторам – химическим посредникам в синаптической передаче информации – придается большое значение в обеспечении механизмов долговременной памяти. Основные медиаторные системы головного мозга – холинэргическая и моноаминоэргическая (включает в себя норадреноэргическую, дофаминэргическую и серотонинэргическую) – принимают самое непосредственное участие в обучении и формировании энграмм памяти.

 

Медиаторы

биологически активные вещества, секретируемые нервными окончаниями и обусловливающие передачу нервных импульсов в синапсах. В качестве М. могут выступать самые различные вещества. Всего насчитывается около 30 видов медиаторов, однако лишь семь из них (ацетилхолин, норадреналин, дофамин, серотонин, гамма-аминомасляную кислоту, глицин и глутаминовую кислоту) принято относить к «классическим» медиаторам.

Участие М. в передаче нервного импульса представляется следующим образом. Специализированный для секреции М. участок пресинаптической клетки имеет особую наружную так называемую секреторную мембрану, которая при возбуждении пресинаптической клетки формирует мембранный пузырек, содержащий М. Содержимое пузырька изливается затем в синаптическую щель, диффундирует к постсинаптической мембране, где взаимодействует с ее специфическими рецепторами. При изучении действия М. на рецепторы периферических органов и ц.н.с. выявлены различные типы рецепторов к одному и тому же медиатору (м-, н-холинорецепторы, α-, β-адренорецепторы и др.). Их разделение основано на особенностях биохимических реакций, протекающих в системе медиатор — рецептор. Например, в м-рецепторах реакция носит мускариноподобный характер (они не чувствительны к яду кураре), в н-рецепторах — никотиноподобный (чувствительны к яду кураре). Взаимодействие медиаторов с α-рецепторами вызывает эффект возбуждения (сужение сосудов, сокращение матки и т.д.): с β-рецепторами — тормозные эффекты (расширение сосудов, расслабление бронхов). Вместе с тем α- и β-рецепторы, расположенные в различных органах, могут по-разному реагировать на медиаторы. В зависимости от характера взаимодействия α- и β-рецепторов с различными М. эти рецепторы соответственно разделяют на α1-, α2-, β1- и β2-адренорецепторы.

Основная часть «классических» медиаторов относится к биогенным аминам. Филогенетически древнейшим из них является дофамин. У млекопитающих и человека дофаминергические нейроны сконцентрированы преимущественно в нигростриарной системе среднего мозга (см. Лимбическая система), а также в Гипоталамусе и нейронах сетчатки глаза. Считают, что дофамин является медиатором интернейронов симпатических ганглиев (см. Вегетативная нервная система). Предполагают существование двух типов дофаминовых рецепторов — Д1 и Д2. Влияние дофамина на адренорецепторы обусловлено его способностью высвобождать норадреналин из пресинаптических мембран клетки; специфическое действие (через дофаминовые рецепторы) сопровождается уменьшением сопротивления почечных сосудов, возрастанием кровотока и клубочковой фильтрации.

Норадреналин (см. Симпатоадреналовая система) осуществляет медиаторную функцию в периферических нервных окончаниях и ц.н.с. Группы норадренергических нейронов имеются в среднем мозге, мосту мозга, продолговатом и промежуточном мозге. Норадреналин как медиатор воздействует на α-адренорецепторы (преимущественно на α1-адренорецепторы) и вызывает сильные сосудосуживающие прессорные и бронхолитические эффекты. Норадреналин в определенной степени взаимодействует и с β-адренорецепторами сердца, что сопровождается увеличением сердечного выброса, возрастанием потребности миокарда в кислороде.

Адреналин длительное время относили к М. Однако доказано, что нейромедиатором является его предшественник — норадреналин, а сам адреналин играет главным образом роль гормона, влияющего на обмен веществ. Вместе с тем адреналин способен оказывать смешанное действие, влиять одновременно на α- и β-адренорецепторы.

Несмотря на то, что дофамин, норадреналин и адреналин обладают самостоятельной медиаторной функцией, их действие взаимосвязано. что обусловлено общностью происхождения. Исходным продуктом этих М. является аминокислота тирозин. Из триптофана образуется другой М. — серотонин. Нервные клетки, содержащие его (серотонинергические нейроны), найдены в коре головного мозга, гиппокампе, гипоталамусе, стволе мозга, спинном мозге. Помимо структур центральной и периферической нервной системы серотонин содержится в различных органах, тканях и клетках, в т.ч. тромбоцитах, клетках кишечника, мозгового вещества надпочечников. В нервной системе серотонин накапливается в цитоплазме нервных окончаний, выделяясь из синаптических пузырьков под влиянием нервных импульсов и взаимодействуя со специфическими рецепторами (серотонинергические рецепторы). Различают три основных типа серотониновых рецепторов — М-, D- и Т-рецепторы. М-рецепторы локализованы в ц.н.с., D-рецепторы — в ц.н.с. и гладких мышцах, Т-рецепторы — в окончаниях афферентных нервов. Периферическое действие серотонина характеризуется стимуляцией сокращения гладкой мускулатуры (матки, кишечника, бронхов), сужением кровеносных сосудов. Серотонин является также одним из медиаторов воспаления.

Ацетилхолин принимает участие в передаче нервного возбуждения в ц.н.с., вегетативных узлах, окончаниях парасимпатических и двигательных нервов. Относясь также к биогенным аминам и являясь уксуснокислым эфиром холина, ацетилхолин быстро (через 1—2 мс) разрушается с образованием холина и уксусной кислоты. Образовавшиеся продукты распада вновь поступают внутрь нервных окончаний, ресинтезируются и снова способны участвовать в проведении нервного импульса. Холинорецепторы локализованы на внешней стороне постсинаптической мембраны. Периферическое мускариноподобное действие ацетилхолина проявляется замедлением сердечных сокращений, расширением кровеносных сосудов и понижением АД, усилением перистальтики желудка и кишечника, желчного и мочевого пузыря, матки, возрастанием секреции пищеварительных, потовых и слезных желез и т.д.

Периферическое никотиноподобное действие ацетилхолина обусловлено его участием в передаче нервных импульсов с преганглионарных волокон на постганглионарные в вегетативных узлах, а также с двигательных нервов на поперечнополосатую мускулатуру, В больших дозах ацетилхолин способен блокировать передачу возбуждения. Аналогично и центральное действие этого М. В малых дозах ацетилхолин участвует в проведении возбуждения в разные отделы мозга, в больших — тормозит синаптическую передачу.

Функции М. выполняет ряд аминокислот. В частности, глутаминовая кислота является самым распространенным М. в центральной нервной системе, особенно в передних отделах головного мозга; в зависимости от типа рецепторов может оказывать либо возбуждающее, либо тормозящее действие. Предшественник глутаминовой кислоты — гамма-аминомасляная кислота (ГАМК) также обладает свойствами М. Специфические ГАМК-ерические рецепторы тесно связаны с дофаминовыми и другими рецепторами мозга.

Большую группу М. составляют нейропептиды (см. Регуляторные пептиды), представляющие собой короткие цепочки из аминокислотных остатков (от двух до 39). Многие из них ранее рассматривались только как гормоны гипофиза, местные гормоны кишечника или гормоны гипоталамуса, регулирующие выделение других гормонов (см. Гипоталамические нейрогормоны).

Наряду с прямым возбуждением или торможением клетки-мишени медиаторы в ряде случаев воздействуют на нервное окончание, усиливая и уменьшая выход из него других медиаторов. Было принято считать, что отдельная нервная клетка секретирует только один М. (принцип Дейла). Однако обнаружена способность одних и тех же клеток синтезировать М. разных типов. Чаще всего отмечаются Следующие сочетания секреций одной и той же клеткой: классические медиаторы и нейропептиды (серотонин + вещество Р, серотонин + тиротропин, норадреналин + соматостатин, норадреналин + энкефалин, норадреналин + панкреатический полипептид, дофамин + холецистокинин, ацетилхолин + вазоактивный кишечный полипептид).

Многие лекарственные средства оказывают лечебное действие, влияя специфическим образом на передачу возбуждения в окончаниях периферических нервов или в центральной нервной системе (см. Адреноблокирующие средства, Адреномиметические средства, Холиномиметические средства).

Для изучения М. вначале была разработана методика выделения из тканей мозга так называемым синаптосом. Это дало возможность изучать механизмы синаптической передачи вне организма. Для изучения функции М. используют также методы избирательного окрашивания М. в нервных клетках. Много ценных данных дает изучение вводимых извне в мозг или отдельную клетку М. с радиоактивной меткой. Перспективны также методы выработки антител против М. или ферментов, участвующих в синтезе или распаде медиаторов.

Медиаторы аллергических реакций — биологически активные вещества, освобождающиеся или создающиеся в результате образования комплекса аллергена с соответствующими антителами или с антигенсенсибилизированными Т-лимфоцитами и имеющие важное значение в патогенезе аллергии. Характер действия М. зависит от типа реакции, ее иммунологических механизмов, вида аллергена.

При аллергической реакции немедленного типа (см. Аллергия) клетками-мишенями являются тучные клетки (лаброциты) и базофильные лейкоциты, имеющие F-рецепторы к антителам классов lgE и lgG4. При соединении аллергена с этими антителами, фиксированными на клетках, наступает дегрануляция и высвобождение из них М. Регуляторами являются внутриклеточные нуклеотиды — циклический аденозинмонофосфат (цАМФ), гуанозинмонофосфат (цГМФ) и ионы кальция. Образование цАМФ и цГМФ происходит под влиянием ферментов — аденилциклазы (АЦ) и гуанилциклазы (ГЦ), а инактивация осуществляется фосфодиэстеразами (ФДЭ). цАМФ препятствует образованию и выделению медиаторов, а цГМФ способствует им. Эти процессы идут с участием адренергических и холинергических рецепторов кортикостероидных гормонов (Кортикостероидные гормоны) и простагландинов (Простагландины) (ПГ). Из тучных клеток и базофилов выделяется гистамин — продукт превращения гистидина. Действуя через гистаминовые рецепторы I типа (Н—1), он вызывает сокращение гладкомышечных органов, расширение сосудов и повышение их проницаемости, снимает кровяное давление, вызывает отек, зуд. При этом повышается содержание гастамина в крови, а также чувствительность к нему клеток органов-эффекторов. В дальнейшем гистамин препятствует освобождению М. из тучных клеток, действуя через гистаминовые рецепторы II типа (Н—2). Естественная способность белков сыворотки связывать гистамин (гистаминопексия) при аллергии пропадает. Для определения гистаминопексии устанавливают гистаминопектический индекс (ГПИ). В норме он составляет 30—40%, при аллергии — ниже 10%. Гистаминопексия является неспецифическим показателем и имеет большое значение для оценки эффективности лечения в динамике.

Большую роль в развитии аллергических реакций играют метаболиты арахидоновой кислоты, которая синтезируется из фосфолипидов клеточных мембран тучных клеток, альвеолярных макрофагов при участии фосфолипазы А. Под влиянием фермента липоксигеназы образуются ее метаболиты — гидроксиэйкозатетраеновая кислота (ГЭТЕ) и лейкотриены (ЛТ), а при участии фермента циклооксигеназы — простагландины. Медиатором аллергии служит медленно реагирующая субстанция, включающая лейкотриены С4 и Д4; она вызывает бронхоспазм, «лейкотриеновый» кашель, повышает чувствительность дыхательных путей к ацетилхолину и гистамину, увеличивает проницаемость сосудов и образование слизи в дыхательных путях. Лейкотриенам отводится значительная роль в патогенезе бронхиальной астмы. В базофилах содержится фактор активации тромбоцитов, вызывающий дегрануляцию тромбоцитов и высвобождение из них серотонина и гистамина.

Медиаторы аллергических реакций цитотоксического типа образуются при участии антител классов ИГ ГИГ М, способных связывать комплемент. Продукты его активации вызывают повышение проницаемости сосудов, хемотаксис нейтрофилов, повреждение мембран, лизис клеток.

Медиаторы аллергических реакций типа Артюса высвобождаются при образовании циркулирующих иммунных комплексов (ИК) с участием lgG и lgM и их последующей фиксацией в тканях. ИК проявляют повреждающее действие при участии комплемента. В реакции принимают участие полиморфно-ядерные лейкоциты, освобождающие лизосомальные ферменты. В процесс вовлекается также калликреин-кининовая система, т.к. при действии ИК активируется фактор Хагемана (XII фактор свертывания крови) — один из активаторов калликреина. Калликреин образуется в крови и тканях из прекалликреина, активация которого может быть вызвана комплексом антиген — антитело. Калликреин обнаруживают также в тучных клетках. В плазме содержится вазоактивный полипептид брадикинин. Он вызывает сокращение гладкомышечных органов, расширение мельчайших артериол и капилляров, увеличение их проницаемости, диапедез лейкоцитов, развитие аллергического воспаления, осложнений и пролонгирование астматических приступов. Основные медиаторные влияния — активация комплемента, калликреин-кининовой системы, действие лизосомальных ферментов.

Медиаторы аллергических реакций замедленного типа (ГЗТ) — лимфокины, высвобождаемые сенсибилизированными Т-лимфоцитами при контакте с антигеном. Лимфокины способствуют концентрации в очаге аллергической реакции различных клеточных элементов, развитию инфильтрации и аллергического воспаления. Кожно-реактивный фактор увеличивает проницаемость сосудов, усиливает миграцию лейкоцитов и мононуклеаров. Сходное действие оказывает фактор проницаемости. Хемотаксический фактор притягивает в очаг реакции нейтрофилы, эозинофилы, несенсибилизированные лимфоциты, моноциты. Миграцию ингибирующий фактор (МИФ) вызывает задержку и накопление макрофагов в зоне аллергической альтерации, участвует в образовании гранулем при инфекционно-аллергических заболеваниях. Выделяется фактор, ингибирующий миграцию лейкоцитов. К митогенным факторам относят кроме лимфоцитарного фактора интерлейкины, выделяемые макрофагами и Т-хелперами; лимфотоксический фактор оказывает цитотоксическое действие на клетки-мишени, способствует развитию некроза при ГЗТ. Фактор цитотоксичности увеличивает цитотоксичность макрофагов. Фактор переноса обеспечивает перенос специфической активности на несенсибилизированные Т-лимфоциты, вовлекая их в реакцию ГЗТ. Лимфоцитами выделяется иммунный интерферон, который не только проявляет антивирусные свойства, но и влияет на активность естественных киллеров. В механизме образования лимфокинов имеет значение соотношение цАМФ и цГМФ. В реакции ГЗТ участвуют лизосомальные ферменты, освобождаемые при разрушении клеток в очаге воспаления, и кинины.

Принципы фармакотерапии патохимической стадии аллергических реакций основаны на подавлении синтеза медиаторов, процессов их высвобождения из клеток, угнетении влияния на органы-эффекторы (см. Противоаллергические средства).

 

Медиатор– это группа химических веществ, которая принимает участие в передаче возбуждения или торможения в химических синапсах с пресинаптической на постсинаптическую мембрану.

Критерии, по которым вещество относят к группе медиаторов:

1) вещество должно выделяться на пресинаптической мембране, терминали аксона;

2) в структурах синапса должны существовать ферменты, которые способствуют синтезу и распаду медиатора, а также должны быть рецепторы на постсинаптической мембране, которые взаимодействуют с медиатором;

3) вещество, претендующее на роль медиатора, должно при очень низкой своей концентрации передавать возбуждение с пресинаптической мембраны на постсинаптическую мембрану. Классификация медиаторов:

1) химическая, основанная на структуре медиатора;

2) функциональная, основанная на функции медиатора.

Химическая классификация.

1. Сложные эфиры – ацетилхолин (АХ).

2. Биогенные амины:

1) катехоламины (дофамин, норадреналин (НА), адреналин (А));

2) серотонин;

3) гистамин.

3. Аминокислоты:

1) гаммааминомасляная кислота (ГАМК);

2) глютаминовая кислота;

3) глицин;

4) аргинин.

4. Пептиды:

1) опиоидные пептиды:

а) метэнкефалин;

б) энкефалины;

в) лейэнкефалины;

2) вещество «P»;

3) вазоактивный интестинальный пептид;

4) соматостатин.

5. Пуриновые соединения: АТФ.

6. Вещества с минимальной молекулярной массой:

1) NO;

2) CO.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.