МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Магнитное поле катушки с синусоидальным током





При пропускании по обмотке катушки синусоидального тока она создает магнитное поле, вектор индукции которого изменяется (пульсирует) вдоль этой катушки также по синусоидальному закону Мгновенная ориентация вектора магнитной индукции в пространстве зависит от намотки катушки и мгновенного направления тока в ней и определяется по правилу правого буравчика. Так для случая, показанного на рис. 1, вектор магнитной индукции направлен по оси катушки вверх. Через полпериода, когда при том же модуле ток изменит свой знак на противоположный, вектор магнитной индукции при той же абсолютной величине поменяет свою ориентацию в пространстве на 1800. С учетом вышесказанного магнитно

 

 

12.Вращающееся магнитное поле статора.

Магнитное поле статора показано на рис. 185, а пунктирными ли­ниями.Как видно из чертежа, поле статора имеет два полюса — север­ный N и южный S или одну пару полюсов, т. е. р =1, где р — чи­сло пар полюсов поля статора.

Обозначаем направление тока в проводниках катушек рис. 185, б, намечаем путь магнитных линий и убеждаемся в том, что за время от момента а до момента б, соответствующее углу 90° (т. е. 1/4 периода), магнитное поле статора повернулось также на 90°. Проделав то же самое для момента в, замечаем, что за время от момента а до момента в, соответствующее углу 180° (1/2 периода), магнитное поле статора повернулось также на 180° (рис. 185, в).

Таким образом, трехфазный ток, проходящий по трем катуш­кам, сдвинутым в пространстве на 120°, образовал вращающееся магнитное поле. Мы разобрали только три случая, но если продол­жить построения дальше, то легко убедиться, что за время одного периода (360°) магнитное поле статора также повернется на 360°.

Если число периодов в 1 сек, или частота переменного тока, равно f, то скорость вращения поля статора п0 будет также равна / об/сек, или f -60 об/мин:

Необходимо обратить внимание на то, что последняя формула для определения скорости вращения поля справедлива только в том случае, если на статоре расположены три катушки, которые совместно создают поле с двумя полюсами, т. е. если р = 1.

Расположим на статоре шесть катушек (рис. 187). В этом слу­чае каждая фаза будет состоять из двух катушек. Начала катушек первой фазы обозначим А1 и A2, концы катушек той же фазы — Х1 и Х2. Для второй фазы соответственно: В1 — Y1 и В2 — Y2. Для третьей фазы: С1 — Z1 и С2 — Z2.

13.Устройство и принцип действия машин переменного тока. Скольжение.

§ 19-1. Основные виды машин переменного токаНа практике применяются преимущественно трехфазные (т — 3) машины переменного тока. Машины е другим числом фаз = 2, 6) используются для специальных целей.Однако действие всех многофазных машин основано на принципе вращающегося магнитного поля, и поэтому их теория является общей.Однофазные машины переменного тока имеют ограниченное применение.Ниже прежде всего рассматриваются трехфазные машины переменного тока. Они подразделяются на три основных вида: синхронные, асинхронные и коллекторные.Все виды машин переменного тока рассчитываются на работу при синусоидальном переменном- токе.В синхронных машинах нормальных типов ротор вращается с такой же скоростью и в том же направлении, как и вращающееся магнитное поле. Таким образом, вращение ротора происходит в такт, или синхронно, с вращающимся полем, откуда и происходит название этого вида машин.Синхронные машины используются прежде всего в качестве генераторов, и за незначительным исключением на электрических станциях переменного тока устанавливаются синхронные генераторы. Однако все более расширяется также применение синхронных машин в качестве двигателей.Ротор асинхронных машин вращается несинхронно, или асинхронно, по отношению к вращающемуся магнитному полю, чем и обусловлено название этих машин.На практике асинхронные машины используются главным образом в качестве двигателей, и подавляющее число применяемых в промышленности электрических двигателей являются асинхронными.Коллекторные машины переменного тока также вращаются несинхронно с магнитным полем, и в этом смысле они являются асинхронными машинами. Однако ввиду наличия у них коллектора и связанных с этим особенностей они выделяются в отдельный вид машин переменного тока. Наибольшее применение коллекторные машины находят в качестве двигателей. Однако их использование ограничено, и поэтому главнейшими видами машин переменного тока являются асинхронные и синхронные машины.Общие вопросы теории многофазных машин переменного тока целесообразно рассмотреть совместно, предварительно приведя краткое описание принципов действия и устройства основных видов машин переменного тока.Скольжение асинхронного двигателя — относительная разность скоростей вращения ротора и магнитного потока, создаваемого обмотками статора двигателя переменного тока.



,где - скорость вращения ротора асинхронного двигателя

- скорость вращения магнитного потока, называется синхронной скоростью двигателя.


,где f - частота сети переменного тока

p - число пар полюсов обмотки статора (число катушек на фазу).

Из последней формулы видно, что скорость вращения двигателя n практически определяется значением его синхронной скорости, а последняя при стандартной частоте 50 Гц зависит от числа пар полюсов: при одной паре полюсов - 3000 об/мин, при двух парах - 1500 об/мин, при трёх парах - 1000 об/мин и т. д.

 

14.Сравнение асинхронных машин и трансформаторов.

 

Сравнение неподвижной асинхронной машины и трансформатора. Несмотря на то, что между обмотками статора и ротора асинхронной машины осуществляется постоянная трансформаторная связь, аналогия между асинхронным двигателем и трансформатором далеко не полная. Основное отличие состоит в следующем:

1) обмотки трансформатора сосредоточенные, а у асинхронной машины — распределенные со сдвинутыми в пространстве осями фаз;

2) в трансформаторе первичная и вторичная обмотки неподвижны, в асинхронной машине могут перемещаться друг относительно друга;

3) в трансформаторе обмотка каждой фазы обычно расположена на отдельном стержне магнитопровода, у асинхронной машины магнитопровод общий для всех фаз;

4) в магнитопроводе трансформатора поток пульсирует, в магнитопроводе трехфазной асинхронной машины — вращается;

5) в магнитопроводе асинхронной машины имеется большой воздушный зазор, вследствие этого величина намагничивающего тока и параметры, характеризующие ветвь намагничивания у асинхронной машины и у трансформатора, различны.

 

 

15.Уравнения и схемы замещения асинхронных машин.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.