МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Общая информация о трансформаторах. Рабочие характеристики, область применения





На сегодняшний день в электроэнергетике широко распространено использование силовых трансформаторов, то есть таких устройств, которые выполняют преобразование электрической энергии в электрических установках и сетях, принимающих ее и использующих.

Силовые трансформаторы – классификация:

Силовые трансформаторы могут быть трехфазными и многофазными, мощностные характеристики которых составляют от 6,3 кВА. Кроме того, выделяют и однофазные устройства мощностью от 4 кВА. Для всех трансформаторов действует следующая классификация:- масляные,- разборные,- сухие,- литые,- суммирующие.

Однако, наибольшим распространением в современной промышленности все-таки пользуются масляные и сухие трансформаторы.

Применимо к высоковольтным линиям электропередач наиболее оптимальным решением будет использование силовых трансформаторов со следующими характеристиками: мощность до 1600 мВА, напряжение 330 кВ, 550 кВ, 750 кВ. При повышении напряжения трансформаторы автоматически уменьшают силу тока. Из этого следует, что передаваемая мощность будет иметь неизменную величину, а потери в проводах линий будут резко сокращаться. Грубо говоря, если напряжение передаваемой энергии увеличивается в 10 раз, то потери снизятся в 100 раз. Благодаря этому, наблюдается снижение параметров потери энергии, а, следовательно, будет сокращаться расход цветных металлов.

Сухие трансформаторы – основные характеристики:

Сухие трансформаторы подразделяются, в свою очередь, на однофазные и трехфазные. Данные устройства используются для понижения или повышения переменного тока. В качестве основной изолирующей среды в них используется атмосферный воздух, на которой, кроме того, еще возлагается охлаждающая функция. Такая разновидность трансформатора в настоящее время используется во многих областях промышленности, а также сельского хозяйства.

Масляные трансформаторы выдерживают напряжение от 6 до 10 кВ. Данные устройства наиболее оптимально эксплуатировать в умеренных или же очень холодных климатических условиях. Масляные трансформаторы предназначены для понижения значений напряжения в электросетях. В отличие от сухих трансформаторов, в масляных установках в качестве охлаждающей среды выступает специальная масляная смесь.

Трансформаторные подстанции – устройство, область применения:

Вместе с обычными трансформаторами в современное время используют еще и комплексные трансформаторные подстанции (КТП). Данная установка представляет собой одно- или двух трансформаторные сооружения, главным предназначением которых является обработка трехфазного переменного тока. Необходимо, чтобы при этом частота тока составляла не менее 50 Гц, а напряжение варьировалось от 6 кВ до 10 кВ.

На сегодняшний день распространено изготовление трансформаторных подстанций в виде бетонных или же металлических сооружений, которые, в свою очередь, подразделяются на три отсека. Именно в них расположены распределительные устройства высших и низших напряжений, а также, непосредственно, сам силовой трансформатор. Если рассматривать сферу применения, то трансформаторные подстанции наиболее распространены в качестве инструментов для механизации разнообразных строительных объектов.



 

 

6.Схемы и группы соединений. Параллельная работа трансформаторов.

 

При параллельной работе двух или нескольких трансформаторов должны быть выполнены следующие условия:
Номинальные напряжения на высокой и низкой стороне должны быть одинаковы. Допускается разность коэффициентов трансформации не более 0,5 %.
Группы соединения обмоток должны быть одинаковы.
Напряжения короткого замыкания должны быть одинаковы. Допускается отклонение от среднего значения ик не более чем на ±10 %.
Не рекомендуется параллельная работа трансформаторов с отношением номинальных мощностей, большим трех.
Группа соединений обмоток определяется фазовым сдвигом векторов линейных и фазных напряжений первичных и вторичных обмоток. Исходной является векторная диаграмма напряжений на первичной стороне.
Наиболее распространенные группы соединений первичной и вторичных обмоток двухобмоточных трансформаторов приведены в табл. 1-19.
Наиболее распространенные группы соединений обмоток трехобмоточных трансформаторов и автотрансформаторов — следующие:
четные группы Д/Д/Д-0-0
нечетные группы У0/Д/Д-11-11; Уо/Уо/Д-0-11
Группа соединений обмоток обозначается на щитке трансформатора и в проверке не нуждается. Группы соединений, отличные от стандартных, могут быть получены при соединении однофазных трансформаторов в трехфазную группу.

 

 

 

7. Измерительные трансформаторы.

Измерительные трансформаторы делятся на трансформаторы напряжения и трансформаторы тока. Их применяют в цепях пере­менного тока для расширения пределов измерения измерительных приборов и для изоляции этих приборов от токоведующих частей, Находящихся под высоким напряжением.

Трансформаторы напряжения (рис. 106, а) конструктивно пред­ставляют собой обычные трансформаторы малой мощности. Пер­ечная обмотка такого трансформатора включается в два линейных провода сети, напряжение которой измеряется или контроли­руется; во вторичную обмотку включают вольтметр или параллельную обмотку ваттметра, счетчика и т. п. Коэффициент трансформации трансформатора напряжения выбирают таким, чтобы при номинальном первичном напряжении напряжение вторичной обмотки было 100 в.

Работа трансформатора напряжения подобна режиму холостого хода обычного силового трансформатора, так как сопротивление вольтметра или параллельной обмотки ваттметра, счетчика и т. п. велико и током во вторичной обмотке можно пренебречь.

Включение во вторичную обмотку большого числа измерительных приборов нежелательно. Если параллельно вольт­метру, включенному во вторичную обмот­ку трансформатора, подсоединить еще один вольтметр или параллельную обмот­ку ваттметра, счетчика и т. п., то ток во вторичной обмотке трансформатора уве­личится, что вызовет падение напряжения на зажимах вторичной обмотки, и точность показания приборов понизится.

Трансформаторы тока (рис. 106,6) служат для преобразования переменного тока большой силы в ток малой силы и изготовляются таким образом, чтобы при номинальной силе тока первичной цепи во вторичной обмотке сила тока была 5 а.

Первичная обмотка трансформатора тока включается в разрез линейного провода (последовательно с нагрузкой), сила тока в ко­тором измеряется; вторичная обмотка замкнута на амперметр или на последовательную обмотку ваттметра, счетчика и т. п., т. е. на измерительный прибор с малым сопротивлением.

Режим работы трансформатора тока существенно отличен от режима работы обычного трансформатора. В обычном трансфор­маторе при изменении нагрузки магнитный поток в сердечнике остается практически неизменным, если постоянно приложенное напряжение.

Если в обычном трансформаторе уменьшить нагрузку, т. е. силу тока во вторичной обмотке, то и в первичной обмотке сила тока уменьшится и, если вторичную обмотку разомкнуть, то сила тока в первичной обмотке уменьшится до тока холостого хода I0.

При работе трансформатора тока его вторичная обмотка замкнута на измерительный прибор с малым сопротивлением и ре­жим работы трансформатора близок к короткому замыканию. По­этому магнитный поток в магнитопроводе трансформатора мал.

Если разомкнуть вторичную обмотку трансформатора тока, то тока в этой обмотке не будет, тогда как в первичной обмотке сила тока остается неизменной.

Таким образом, при разомкнутой вторичной обмотке трансформатора тока магнитный поток в магнитопроводе, возбужденный током первичной обмотки и не встречающий размагничивающего

действия тока вторичной обмотки, окажется очень большим и, сле­довательно, э. д. с. вторичной обмотки, имеющей большее число витков, достигает большой величины, опасной для целости изоля­ций этой обмотки и для обслуживающего персонала. Поэтому при выключении измерительных приборов из вторичной обмотки транс­форматора тока эту обмотку необходимо замкнуть накоротко.

Включение большого числа измерительных приборов во вторич­ную обмотку трансформатора тока снижает точность измерения.

Конструкции трансформаторов тока в зависимости от назначе­ния чрезвычайно разнообразны и делятся на стационарные и пере­носные.

При работе измерительных трансформаторов напряжения и тока возможен пробой изоляции их первичных обмоток и, как след­ствие пробоя, электрическое соединение первичной обмотки с сер­дечником или со вторичной обмоткой.

Для безопасности обслуживания сердечники и вторичные обмот­ки измерительных трансформаторов заземляются.

 

8.Автотрансформаторы.

 

Автотрансформатор

Материал из Википедии — свободной энциклопедии

Перейти к: навигация, поиск

Схема автотрансформатора

Автотрансформа́тор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только магнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения.

Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. В промышленных сетях, где наличие заземления нулевого провода обязательно, этот фактор роли не играет, зато существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость

Автотрансформаторы

Понижающий автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Понижающий автотрансформатор имеет обмотку на несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения.

Понижающий автотрансформатор (трансформатор понижающий) имеет более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Понижающий автотрансформатор (трансформатор понижающий) имеет и недостатки: отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. В промышленных сетях, где наличие заземления нулевого провода обязательно, этот фактор роли не играет. Зато существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге - меньшая стоимость.

Понижающие автотрансформаторы "Штиль" предназначены для электропитания приборов, аппаратуры и устройств переменным током напряжением 110В от стандартной электросети с напряжением 220 В. Изделие представляет собой понижающий автотрансформатор (трансформатор понижающий) на тороидальном сердечнике в металлическом корпусе.

 

 

9. Способы регулирования напряжения.

Способы регулирования напряжения. Одним из распространенных способов регулирования напряжения на шинах подстанции является переключение ответвлений на трансформаторах. С этой целью у обмоток (как правило, высшего напряжения, имеющих меньший рабочий ток) трансформаторов предусматриваются регулировочные ответвления и специальные переключатели ответвлений, при помощи которых изменяют число включенных в работу витков, увеличивая или уменьшая коэффициент трансформации

где wBH и whh - число включенных в работу витков обмоток ВН и НН соответственно.

Изменение коэффициента трансформации между обмотками высшего и низшего напряжений позволяет поддерживать на шинах НН напряжение, близкое к номинальному, когда первичное или вторичное напряжение отклоняется по тем или иным причинам от номинального.

Операции переключения секции витков производят на отключенном от сети трансформаторе устройством ПБВ (переключение без возбуждения) либо на работающем трансформаторе непосредственно под нагрузкой устройством РПН (регулирование под нагрузкой). Трансформаторы большой мощности с устройствами ПБВ имеют до пяти ответвлений для получения четырех ступеней напряжения относительно номинального (±2x2,5%)UHOM. В зависимости от класса напряжения трансформатора, его исполнения и числа ступеней регулирования применяют различные по конструкции переключатели ответвлений. Они могут быть трехфазными и однофазными. Однофазные переключатели барабанного типа (рис. 1.10) устанавливаются на каждой фазе обмотки ВН. Контактная система состоит из неподвижных контактов - полых токоведущих стержней 3 (A1-A6 на рис. 1.10, б), соединенных с ответвлениями 2 от обмоток, и подвижных контактных колец 5, замыкающих между собой различные пары неподвижных контактов. Контактные кольца перемещаются коленчатым валом 4, ось которого при помощи изолирующей штанги 6 соединяется с приводом на крышке трансформатора. Переключатель смонтирован на изолирующих основаниях 1.

 

Способы и средства регулирования напряжения в электрических сетях

Регулирование напряжения в электрических сетях сложно осуществлять, изменяя:

а) напряжение генераторов электростанций;

б) коэффициент трансформации трансформаторов и автотрансформаторов;

в) параметры питающей сети;

г) величину реактивной мощности, протекающей по сети. Применением перечисленных способов обеспечивается централизованное регулирование напряжения, однако последние три из них могут быть применены и для местного регулирования.Рассмотрим, подробнее способы регулирования напряжения, применяемые в электрических сетях.


10. Электрические машины переменного тока. Классификация.

 

Электрическая машина — это электромеханический преобразователь энергии[1], основанный на явлениях электромагнитной индукции и силы Лоренца, действующей на проводник с током, движущийся в магнитном поле.

Общие положения

Возможность создания электрической машины как электромеханического преобразователя базируется на электромагнитном взаимодействии, которое осуществляется посредством электрического тока и магнитного поля. Электрическая машина, в которой электромагнитное взаимодействие осуществляется при помощи магнитного поля называется индуктивной, а в которой при помощи электрического — ёмкостной. Ёмкостные машины практически не используются, так как при конечной проводимости воздушной среды (при наличии влаги) заряды будут исчезать из активной зоны электрической машины в землю (то есть огромные потери энергии).

Классификация

 

Если электрическая энергия преобразуется в механическую работу и тепло, тогда электрическая машина является электрическим двигателем; когда механическая работа преобразуется в электрическую энергию и тепло, тогда электрическая машина является электрическим генератором; когда электрическая энергия одного вида преобразуется в электрическую энергию другого вида, тогда электрическая машина является электромеханическим преобразователем и когда механическая и электрическая энергии преобразуются в тепло, тогда электрическая машина является электромагнитным тормозом. Для большинства машин выполняется принцип обратимости, когда одна и та же машина может выступать как в роли двигателя, так и в роли генератора или электромагнитного тормоза.

В большинстве электрических машин выделяют ротор — вращающуюся часть, и статор — неподвижную часть, а также воздушный зазор, их разделяющий.

По принципу действия выделяют нижеследующие виды машин:

  1. Асинхронная машина — электрическая машина переменного тока, в которой частота вращения ротора отличается от частоты вращения магнитного поля в воздушном зазоре на частоту скольжения.
  2. Синхронная машина — электрическая машина переменного тока, в которой частоты вращение ротора и магнитного поля в зазоре равны.
  3. Машина двойного питания (и как вариант - асинхронизированная синхронная машина) — электрическая машина переменного тока, в которой ротор и статор в общем случае имеют разные частоты питающего тока. В результате ротор вращается с частотой, равной сумме (разности) питающих частот.
  4. Машина постоянного тока — электрическая машина, питаемая постоянным током и имеющая коллектор.
  5. В определении (выше по тексту) ЭМ имеет ДВИЖУЩИЙСЯ проводник с эл. током. Трансформатор — электрический аппарат [2] переменного тока (электрический преобразователь), преобразующий электрический ток напряжения одного номинала в электрический ток напряжения другого номинала. Существуют статические и поворотные трансформаторы .
  6. Инвертор на базе электрической машины (см. также Умформер) — как правило, пара электрических машин, соединённых валами, выполняющих преобразование рода тока (постоянный в переменный или наоборот), частоты тока, числа фаз, напряжений.
  7. Вентильный двигатель — электрическая машина постоянного тока, в которой механический коллектор заменён полупроводниковым коммутатором (ПК), возбуждение осуществляется от постоянных магнитов, размещенных на роторе; а статорная обмотка, как в синхронной машине. ПК по сигналам логического устройства поочерёдно, в определённой последовательности, попарно подключает фазы электродвигателя к источнику постоянного тока, создавая вращающееся поле статора, которое, взаимодействуя с полем постоянного магнита ротора, создаёт вращающий момент электродвигателю.
  8. сельсин -электрическая машина для дистанционной передачи информации об угле поворот

 

 

11. Вращающееся магнитное поле ротора.

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.