МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Основной закон релятивистской динамики материальной точки





Согласно представлениям классической механики, масса тела есть величина по­стоянная. Однако в конце XIX столетия на опытах с быстро движущимися электрона­ми было установлено, что масса тела за­висит от скорости его движения, а имен­но возрастает с увеличением скорости

 

 

по закону

где m0 масса покояматериальной точ­ки, т. е. масса, измеренная в той инерци­альной системе отсчета, относительно ко­торой материальная точка находится в по­кое; с —скорость света в вакууме; m — масса точки в системе отсчета, относи­тельно которой она движется со скоростью v. Из принципа относительности Эйн­штейна (см. §35), утверждающего инва­риантность всех законов природы при пе­реходе от одной инерциальной системы отсчета к другой, следует условие инвари­антности уравнений физических законов относительно преобразований Лоренца. Основной закон динамики Ньютона

оказывается также инвариантным по от­ношению к преобразованиям Лоренца, ес­ли в нем справа стоит производная по времени от релятивистского импульса.

Основной закон релятивистской дина­микиматериальной точки имеет вид

— релятивистский импульсматериальной точки.

Отметим, что уравнение (39.3) внешне совпадает с основным уравнением ньюто­новской механики (6.7). Однако физиче­ский смысл его другой: справа стоит про­изводная по времени от релятивистского импульса, определяемого форму­лой (39.4). Таким образом, уравне­ние (39.2) инвариантно по отношению

к преобразованиям Лоренца и, следова­тельно, удовлетворяет принципу относи­тельности Эйнштейна. Следует учитывать, что ни импульс, ни сила не являются инва­риантными величинами. Более того, в об­щем случае ускорение не совпадает по направлению с силой.

В силу однородности пространства (см. § 9) в релятивистской механике вы­полняется закон сохранения релятивист­ского импульса:релятивистский импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени. Часто во­обще не оговаривают, что рассматривают релятивистский импульс, так как если тела движутся со скоростями, близкими к с, то можно использовать только релятивист­ское выражение для импульса.

Анализ формул (39.1), (39.4) и (39.2) показывает, что при скоростях, значитель­но меньших скорости света, уравне­ние (39.2) переходит в основной закон (см. (6.5)) классической механики. Следо­вательно, условием применимости законов классической (ньютоновской) механики является условие v<<с. Законы классиче­ской механики получаются как следствие теории относительности для предельного случая v<<с (формально переход осуще­ствляется при с®¥). Таким образом, классическая механика — это механика макротел, движущихся с малыми скоро­стями (по сравнению со скоростью света в вакууме).

Экспериментальное доказательство за­висимости массы от скорости (39.1) явля­ется подтверждением справедливости спе­циальной теории относительности. В даль­нейшем (см. §116) будет показано, что на основании этой зависимости про­изводятся расчеты ускорителей.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.