ПОЗНАВАТЕЛЬНОЕ Сила воли ведет к действию, а позитивные действия формируют позитивное отношение Как определить диапазон голоса - ваш вокал
Игровые автоматы с быстрым выводом Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими Целительная привычка Как самому избавиться от обидчивости Противоречивые взгляды на качества, присущие мужчинам Тренинг уверенности в себе Вкуснейший "Салат из свеклы с чесноком" Натюрморт и его изобразительные возможности Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д. Как научиться брать на себя ответственность Зачем нужны границы в отношениях с детьми? Световозвращающие элементы на детской одежде Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия Как слышать голос Бога Классификация ожирения по ИМТ (ВОЗ) Глава 3. Завет мужчины с женщиной 
Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д. Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. | Підходи до розуміння проблеми Єдиної відповіді на питання чим займається штучний інтелект (ШІ), не існує. Майже кожен автор, який пише книгу про штучний інтелект, відштовхується від якогось визначення, розглядаючи в його світлі досягнення цієї науки. Зазвичай ці визначення зводяться до наступних: · штучний інтелект вивчає методи розв'язання задач, які потребують людського розуміння. Грубо кажучи мова іде про те, щоб навчити ШІ розв'язувати тести інтелекту. Це передбачає розвиток способів розв'язання задач за аналогією, методівдедукції та індукції, накопичення базових знань і вміння їх використовувати. · штучний інтелект вивчає методи розв'язання задач, для яких не існує способів розв'язання або вони не коректні (через обмеження в часі, пам'яті тощо). Завдяки такому визначенню інтелектуальні алгоритми часто використовуються для розв'язання NP-повних задач, наприклад, задачі комівояжера. · штучний інтелект займається моделюванням людської вищої нервової діяльності. · штучний інтелект — це системи, які можуть оперувати з знаннями, а найголовніше — навчатися. В першу чергу мова ведеться про те, щоби визнати клас експертних систем (назва походить від того, що вони спроможні замінити «на посту» людей-експертів) інтелектуальними системами. · Останній підхід, що почав розвиватися з 1990-х років, називається агентно-орієнтованим підходом. Цей підхід акцентує увагу на тих методах і алгоритмах, які допоможутьінтелектуальному агенту виживати в довкіллі під час виконання свого завдання. Тому тут значно краще вивчаються алгоритми пошуку і прийняття рішення. Непопулярні підходи Найзагальніший підхід полягає в тому, що штучний інтелект матиме змогу поводити себе як людський в нормальних ситуаціях. Ця ідея являє собою узагальнений підхід тесту Тюрінга, який стверджує, що машина стане розумною тоді, коли буде спроможна підтримувати діалог зі звичайною людиною, а та не зможе зрозуміти, що розмовляє з машиною (діалогведеться переписуванням). Письменники-фантасти часто пропонують ще один підхід: штучний інтелект виникає тоді, коли машина буде відчувати і творити. Так, наприклад, хазяїн Ендрю Мартіна з «Двохсотлітньої людини» Айзека Азімова починає ставитись до нього як до людини тоді, коли той створив іграшку за власним проектом. А Дейта з «Зоряного шляху», будучи спроможним до спілкування та навчання, мріє отримати емоції та інтуїцію. Підходи до вивчення Існують різні підходи до створення систем штучного інтелекту. У наш час можна виділити 4 досить різних підходи: 1. Логічний підхід. Основою для вивчення логічного підходу слугує алгебра логіки. Кожен програміст знайомий з нею з тих пір, коли він вивчав оператор IF. Свого подальшого розвитку алгебра логіки отримала у вигляді числення предикатів — в якому вона розширена за рахунок введення предметних символів, відношень між ними. Крім цього, кожна така машина має блок генерації цілі, і система виводу намагається довести дану ціль як теорему. Якщо ціль досягнута, то послідовність використаних правил дозволить отримати ланцюжок дій, необхідних для реалізації поставленої цілі (таку систему ще називають експертною системою). Потужність такої системи визначається можливостями генератора цілей і машинного доведення теорем. Для того щоб досягти кращої виразності логічний підхід використовує новий напрям, його назва — нечітка логіка. Головною відмінністю цього напряму є те, що істинність вислову може приймати окрім значень так/ні (1/0) ще й проміжне значення — не знаю (0.5), пацієнт швидше за все живий, ніж мертвий (0.75), пацієнт швидше за все мертвий, ніж живий (0.25). Такий підхід подібніший до мислення людини, оскільки вона рідко відповідає так або ні. 2. Під структурним підходом ми розуміємо спроби побудови ШІ шляхом моделювання структури людського мозку. Однією з перших таких спроб був перцептрон Френка Розенблатта. Головною моделюючою структурною одиницею в перцептронах (як і в більшості інших варіантах моделювання мозку) є нейрон. Пізніше виникли й інші моделі, відоміші під назвою нейронні мережі (НМ) і їхні реалізації — нейрокомп’ютери. Ці моделі відрізняються за будовою окремих нейронів, за топологією зв'язків між ними і алгоритмами навчання. Серед найвідоміших в наш час[Коли?] варіантів НМ можна назвати НМ зі зворотнім розповсюдженням помилки, сітки Кохонена, сітки Хопфілда, стохастичні нейрони сітки. У ширшому розумінні цей підхід відомий як Конективізм. Відмінності між логічним та структурним підходом не стільки принципові, як це здається на перший погляд. Алгоритми спрощення і вербалізації нейронних мереж перетворюють моделі структурного підходу в явні логічні моделі.[1] З іншої сторони, ще в 1943 році Маккалок і Піттспоказали, що нейронна сітка може реалізувати будь-яку функцію алгебри логіки[2]. 3. Еволюційний підхід. Під час побудови системи ШІ за даним методом основну увагу зосереджують на побудові початкової моделі, і правилам, за якими вона може змінюватися (еволюціонувати). Причому модель може бути створена за найрізноманітнішими методами, це може бути і НМ, і набір логічних правил, і будь-яка інша модель. Після цього ми вмикаємо комп'ютер і він, на основі перевірки моделей відбирає найкращі з них, і за цими моделями за найрізноманітнішими правилами генеруються нові моделі. Серед еволюційних алгоритмів класичним вважається генетичний алгоритм. 4. Імітаційний підхід. Цей підхід є класичним для кібернетики з одним із її базових понять чорний ящик. Об'єкт, поведінка якого імітується, якраз і являє собою «чорний ящик». Для нас не важливо, які моделі в нього всередині і як він функціонує, головне, щоби наша модель в аналогічних ситуаціях поводила себе без змін. Таким чином тут моделюється інша властивість людини — здатність копіювати те, що роблять інші, без поділу на елементарні операції і формального опису дій. Часто ця властивість економить багато часу об'єктові, особливо на початку його життя. У рамках гібридних інтелектуальних систем намагаються об'єднати ці напрямки. Експертні правила висновків можуть генеруватися нейронними мережами, а породжуючі правила отримують з допомогою статистичного вивчення. Багатообіцяючий новий підхід, який ще називають підсилення інтелекту, розглядають досягнення ШІ в процесі еволюційної розробки як поточний ефект підсилення людського інтелекту технологіями. Напрями досліджень Аналізуючи історію ШІ, можна виділити такий обширний напрям як моделювання міркувань. Багато років розвиток цієї науки просувався саме цим шляхом, і зараз це одна з найрозвиненіших областей в сучасному ШІ. Моделювання міркувань має на увазі створення символьних систем, на вході яких поставлена деяка задача, а на виході очікується її розв'язок. Як правило, запропонована задача уже формалізована, тобто переведена в математичну форму, але або не має алгоритму розв'язання, або цей алгоритм за складний, трудомісткий і т. д. В цей напрям входять: доведення теорем, прийняття рішень і [теорія ігор], планування і диспетчеризація, прогнозування. Таким чином, на перший план виходить інженерія знань, яка об'єднує задачі отримання знань з простої інформації, їх систематизацію і використання. Досягнення в цій області зачіпають майже всі інші напрями дослідження ШІ. Тут також необхідно відмітити дві важливі підобласті. Перша з них — машинне навчання — стосується процесу самостійногоотримання знань інтелектуальною системою в процесі її роботи. Друга пов'язана з створенням експертних систем — програм, які використовують спеціалізовані бази знань для отримання достовірних висновків щодо довільної проблеми. Великі і цікаві досягнення є в області моделювання біологічних систем. Сюди можна віднести кілька незалежних напрямків. Нейронні мережі використовуються для розв'язання нечітких і складних проблем, таких як розпізнавання геометричних фігур чи кластеризація об'єктів. Генетичний підхід заснований на ідеї, що деякий алгоритм може стати ефективнішим, якщо відбере кращі характеристики у інших алгоритмів («батьків»). Відносно новий підхід, де ставиться задача створення автономної програми — агента, котрий співпрацює з довкіллям, називається агентний підхід. А якщо належним чином примусити велику кількість «не дуже інтелектуальних» агентів співпрацювати разом, то можна отримати «мурашиний» інтелект. Задачі розпізнавання об'єктів вже частково розв'язуються в рамках інших напрямків. Сюди відносяться розпізнавання символів, рукописного тексту, мови, аналіз текстів. Особливо слід згадати комп’ютерне бачення, яке пов'язане з машинним навчанням та робототехнікою. У загальному, робототехніка і штучний інтелект часто асоціюються одне з одним. Інтеграцію цих двох наук, створення інтелектуальних роботів, можна вважати ще одним напрямом ШІ. Окремо тримається машинна творчість (англ. Computational creativity), у зв'язку з тим, що природа людської творчості ще менше вивчена, ніж природа інтелекту. Тим не менше, ця область існує, і тут стоять проблеми написання комп'ютером музики, літературних творів (часто — віршів та казок), художнє мистецтво. Нарешті, існує безліч програм штучного інтелекту, кожна з яких утворює майже самостійний напрямок. В якості прикладів можна навести програмування інтелекту в комп'ютерних іграх, нелінійному керуванні, інтелектуальні системи безпеки. Не важко бачити, що більшість областей дослідження перетинаються. Це властиво для будь-якої науки. Але в штучному інтелекті взаємозв'язок між, задавалось би, різними напрямами виражений дуже сильно, і це пов'язано з філософським спором про сильний і слабкий ШІ. Моделі мозку Теоретичні положення Кінцевою метою досліджень з питань «штучного інтелекту» є розкриття таємниць мислення та створення моделі мозку. Принципова можливість моделювання інтелектуальних процесів випливає з основного гносеологічногорезультату кібернетики, який полягає у тому, що будь-яку функцію мозку, будь-яку розумову діяльність, описану мовою з суворо однозначною семантикою за допомогою скінченного числа слів, в принципі можна передати електронній цифровій обчислювальній машині (ЕЦОМ). Сучасні ж наукові уявлення про природу мозку дають підстави вважати, що принаймні в суто інформаційному аспекті найістотніші закономірності мозку визначаються скінченною (хоч, може, й надзвичайно великою) системою правил. Практична реалізація Штучний інтелект — технічна (в усіх сучасних випадках спроб практичної реалізаціїї — комп'ютерна) система, що має певні ознаки інтелекту, тобто здатна: · розпізнавати та розуміти; · знаходити спосіб досягнення результату та приймати рішення; · вчитися. У практичному плані наявність лише неповних знань про мозок, про його функціонування не заважає будувати його наближені інформаційні моделі, моделювати на ЕЦОМ найскладніші процеси мислення, у тому числі й творчі. Проблематика моделювання Хоч проблема «штучного інтелекту» тісно пов'язана з потребами практики, однак тут немає єдиної загальної практичної задачі, яка б однозначно визначала розвиток теорії, проте є багато задач, які є частковими, вузькими. Тому проблема «штучного інтелекту» — це фактично цілий комплекс проблем, які характеризуються різним ступенем загальності, абстрактності, складності й розробленості і кожній з яких властиві свої принципові й практичні труднощі. Це такі проблеми, як розпізнавання образів, навчання й самонавчання, евристичне програмування, створення загальної теорії самоорганізовуваних систем, побудова фізичної моделі нейрона та ін., багато з яких мають велике самостійне значення. Для всіх цих напрямів одержано важливі результати, як практичного так і теоретичного характеру, продовжуються інтенсивні дослідження. Оскільки крім малочисельних оптимістів майже ніхто не намагається саме «виготовити» інтелект, аналогічний людському, то мова ведеться про створення системи, яка буде здатна реалізувати певні моделі інтелекту. Історія і сучасний стан Історія На початку XVII століття Рене Декарт зробив припущення, що тварина — деякий складний механізм, тим самим сформулювавши механічну теорію. В 1623 р. Вільгельм Шикард (нім.Wilhelm Schickard) побудував першу механічну цифрову вичислювальну машину, за якою послідували машини Блеза Паскаля (1643) і Лейбніца (1671). Лейбніц також був першим, хто описав сучасну двійкову систему числення, хоча до нього цією системою періодично захоплювались різні великі вчені[3][4]. В XIX столітті Чарльз Беббідж і Ада Лавлейс працювали над програмованою механічною обчислювальною машиною. В 1910—1913 рр. Бертран Рассел і А. Н. Уайтхед опублікували працю «Принципи математики», яка здійснила революцію в формальній логіці. В 1941 р. Конрад Цузе побудував перший працюючий програмно-контрольований комп'ютер. Воррен Маккалок і Вальтер Піттс в 1943 р. опублікували A Logical Calculus of the Ideas Immanent in Nervous Activity, поклавши основинейронних мереж. [1] Сучасний стан справ У наш час у створенні штучного інтелекту (в буквальному розумінні цього слова, експертні системи і шахові програми сюди не відносяться) спостерігається інтенсивний перелом усіх предметних областей, які мають хоч якесь відношення до ШІ в базі знань. Практично всі підходи були випробувані, але до появи штучного розуму жодна дослідницька група так і не дійшла. Дослідження ШІ влились в загальний потік технологій сингулярності (видового стрибка, експотенціального розвитку людини), таких якнанотехнологія, молекулярна біоелектроніка, теоретична біологія, квантова теорія(ї), ноотропіки, екстромофіли і т. д. див. щоденний потік новинКурцвейля, MIT Деякі з найбільш вражаючих систем ШІ: · Deep Blue — переміг чемпіона світу з шахів. Матч Каспаров проти суперЕОМ не приніс задоволення ні комп'ютерщикам, ні гравцям і система не була визнана Каспаровим, хоча оригінальні компактні шахові програми — невід'ємний елемент шахової творчості. Згодом лінія суперкомп'ютерів IBM проявилась у проектах brute force BluGene (молекулярне моделювання) і моделювання системи пірамідальних клітин в швейцарському центрі — проект Blue Brain[2]. Дана історія — приклад заплутаних і засекречених відносин ШІ, бізнесу і національних стратегічних задач. · Mycin — одна з ранніх експертних систем, яка могла діагностувати невеликий набір захворювань, причому, часто так само точно, як і лікарі. · Штучний інтелект, який аналізує питання і підбирає людину для відповіді на нього Тахуті. · 20q — проект, в основі якого лежать ідеї ШІ, за мотивами класичної гри «Двадцять питань». Став дуже популярним після появи в інтернеті на сайті 20q.net. · Розпізнання голосового тексту. Системи такі як ViaVoice здібні обслуговувати користувачів. · Роботи в щорічному турнірі RoboCup змагаються в спрощеній формі футболу. · «Cleverbot» — веб-застосунок що здатен проводити бесіди з людьми англійською мовою. |