МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Описание метода вычисления коэффициентов нормальных уравнений.





 

Аналогичные уравнения можно получить, применяя описанные выше операции по отношению к переменным С2 ,…,Сm . Эти уравнения образуют систему нормальных уравнений:

 

a11 С1 + a12 С2 +…+ a1m Сm = b­1

a21 С1 + a22 С2 +…+ a2m Сm = b­2 (5)

……………………………………………………………..

am1 С1 + am2 С2 +…+ am m Сm = b­m ,

 

где коэффициенты ak l и величины bk (k, l = 1, 2,…, m) определяются выражениями

Уравнения (5) представляют собой систему линейных алгебраических уравнений.

Преимущество использования линейного представления аппроксимирующей функции j (x) состоит в том, что в этом случае однозначно решается вопрос о минимуме величины J. Действительно, если решение системы линейных уравнений (9) существует, то оно единственно, поэтому необходимые условия являются в данном случае и достаточными условиями минимума функции J(С1, С2 ,…, Сm).

5)Описание метода определения параметров аппроксимирующей функции (решение системы нормальных уравнений).

Для решения системы нормальных уравнений был выбран метод Гаусса.

Один из возможных способов минимизации критерия аппроксимации предполагает решение системы нормальных уравнений. При выборе в качестве аппроксимирующей функции линейной функции искомых параметров нормальные уравнения представляют собой систему линейных алгебраических уравнений.

Систему n линейных уравнений общего вида (где через xk обозначены искомые параметры Сk аппроксимирующей функции)

 

a11 x1 + a12 x2 +…+ a1n xn = b­1

a21 x1 + a22 x2 +…+ a2n xn = b­2

…………………………………………..

an1 x1 + an2 x2 +…+ an n xn = b­n

 

можно записать посредством матричных обозначений в следующем виде:

 

A X = B, где

Квадратная матрица A называется матрицей системы, вектор Xвектором-столбцом неизвестных системы, а вектор Bвектором-столбцом свободных членов.

В матричном представлении исходная система линейных уравнений примет вид

Решение системы линейных уравнений сводится к отысканию значений элементов вектора-столбца (xi), называемых корнями системы. Для получения единственного решения системы входящие в нее n уравнений должны быть линейно независимыми. Необходимым и достаточным условием этого является неравенство нулю определителя данной системы, т.е.
det A ¹ 0.

Для решения был выбран метод Гаусса. Согласно этому методу, исходная система линейных уравнений преобразуется путем последовательного исключения неизвестных в эквивалентную систему уравнений, имеющую так называемый «треугольный» вид. Последнее уравнение «тре­угольной» системы содержит лишь одно неизвестное (xn), предпоследнее – два (xn, xn-1) и т.д. Решение полученной системы уравне­ний осуществляется последовательным («снизу вверх») определением xn из последнего уравнения «треугольной» системы, xn-1изпредпоследнего и т.д. Применительно к системе уравнений преобразование к «треугольному» виду осуществляется за (n – 1) шагов.

На первом шаге выделяется первое уравнение системы. Это уравнение не преобразуется, и оно объявляется ведущим уравнением. Затем исключается неизвестное x1 из всех уравнений, кроме веду­щего. Для этого последовательно из каждого уравнения вычитается ведущее уравнение, умноженное на некоторый специально подобранный множитель, позволяющий сделать результирующий коэффициент при x1 равным нулю. Так, например, для исключения x1 из второго уравнения



 

a21 x1 + a22 x2 + …+ a2 n xn = b2

 

необходимо из него вычесть ведущее уравнение, умноженное на коэффициент q21 = a21 / a11. Действительно, результат вычитания имеет вид

 

(a21 – q2111) x1 + (a22 – q2112) x2 + …+ (a2n – q211n) xn =
= b2 – q21 b1 .

Очевидно, что коэффициент (a21 – q21 a11 ) при x1 равен ну­лю. Вводя новые обозначения для коэффициентов

k=(2, …, n) ,


и свободного члена


можно переписать уравнение в виде

 

 

Аналогичную процедуру можно проделать с третьим уравнением системы. Умножая ведущее уравнение на q31=a31 /a11 и вы­читая результат умножения из третьего уравнения, получим эквива­лентное уравнение

и т.д.

В результате рассмотренного первого шага исходная система уравнений превратится в эквивалентную систему уравнений, причем неизвестное x1 входит только в первое уравнение:

 

 

На втором шаге ведущим объявляется второе уравнение системы и исключается неизвестное x2 из уравнений с номерами от третьего до последнего. Исключение неизвестного проводится по схеме, описанной в первом шаге. Для исключения x2 из третьего уравнения системы ведущее уравнение умножается на

 
 

и результат умножения вычитается из третьего уравнения, результирующий коэффициент при x2 будет равен нулю. Для исключения x2 из четвертого уравнения ведущее уравнение умножается на

и т.д. В результате второго шага (исключения неизвестного x2) будет получена система урав­нений, также эквивалентная исходной системе:

 

 

где введены новые обозначения для коэффициен­тов преобразуемых уравнений. Отметим, что неизвестное x1 вхо­дит только в первое уравнение, а неизвестное x2 - в первое и второе уравнения.

На (n-1) шаге исключается неизвестное xn-1 из последнего n-го уравнения, и в результате система уравнений принимает окончательный «треугольный» вид

 

Полученная система уравнений эквивалентна исходной системе уравнений. Описанный процесс последовательного исключения неизвестных носит название прямого хода метода Гаусса.

Определим обобщенные формулы для расчета коэффициентов системы в процессе прямого хода метода Гаусса. На i-м шаге неизвестное xi исключается из всех уравнений с номерами k, где i+1 £ k £ n, при этом ведущее уравнение (с номером i) умножается на

,

 

и результат умножения вычитается из k-го уравнения. Новые значения коэффициентов (в уравнении с номером k) при неизвестных xj, (i+1 £ j £ n) равны

 

новое значение свободного члена

.

Решение треугольной системы уравнений носит название обратного хода метода Гаусса и заключается в последовательном определении всех неизвестных, начиная с последнего xn. Действительно, из последнего уравнения системы вытекает, что

Значение xn-1 получается при решении предпоследнего уравнения

 

.

 

Так как xn уже определено, то

 

Эта процедура применяется последовательно ко всем уравнениям, включая и первое, из которого определяется

Обобщенная формула вычисления xi имеет вид

 

 

В процессе прямого хода метода Гаусса может оказаться, что коэффициент aij(i-1) ведущего уравнения равен нулю. Тогда исключить xiиз остальных уравнений описанным методом нельзя. Однако уравнения системы можно поменять местами и объявить ведущим то уравнение, у которого коэффициент при неизвестном xi отличен от нуля. Отметим, что системы, отличающиеся лишь взаимным расположением образующихих уравнений, являются эквивалентными. Перестановка уравнений не только допустима, но часто и полезна для уменьшения погрешности арифметических вычислений. Для уменьшения погрешности вычислений в качестве ведущего обычно выбирается уравнение с максимальным по модулю коэффициентом при xi. Это уравнение и уравнение с номером i меняют местами, и процесс исключения продолжается обычным образом. Поиск максимального по модулю коэффициента приxi носит название определение ведущего элемента.

 

 

6)Схемы алгоритмов и их описание.

Подпрограмма функции fi

 

           
 
   
на вход подпрограммы подаются номер функции (k) и элемент Xi из матрицы X
 
   
 

 

 


Алгоритм подпрограммы нахождения матриц А и В:

 

                 
 
   
 
   
присвоение значения элементу Akl (k-номер столбца, l-номер строки)  
 
   
 
   
 
   
выход матрицы A и вектора B  
 

 

 


Алгоритм подпрограммы вывода матрицы А:

         
 
   
 
   
 

 

 


Алгоритм подпрограммы вывода вектора В:

         
 
   
 
   
 

 


· Алгоритм подпрограммы решения системы линейных уравнений методом Гаусса:

             
 
   
 
   
 
   
 

 

       
 
   
 

 


Основная программа:

 

                     
 
   
цикл количества элементов в матрицах X и Y  
 
   
 
   
 
 
   
     
 
     
 
     
 

 






©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.