МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Дисперсия и стандартное отклонение





Дисперсия случайной величины — мера разброса данной случайной величины, то есть её отклонения от математического ожидания. В статистике для обозначения дисперсии часто употребляется обозначение (сигма в квадрате). Квадратный корень из дисперсии , равный , называется стандартным отклонением или стандартным разбросом. Стандартное отклонение измеряется в тех же единицах, что и сама случайная величина, а дисперсия измеряется в квадратах этой единицы измерения.

Хотя для оценки всей выборки очень удобно использовать лишь одно значение (такое как среднее значение или моду и медиану), этот подход легко может привести к неправильным выводам. Причина такого положения лежит не в самой величине, а в том, что одна величина никак не отражает разброс значений данных.

Например, в выборке:

среднее значение равно 5.

Однако, в самой выборке нет ни одного элемента со значением 5. Возможно, Вам потребуется знать степень близости каждого элемента выборки к ее среднему значению. Или, другими словами, вам потребуется знать дисперсию значений. Зная степень изменения данных, Вы можете лучше интерпретировать среднее значение, медиану и моду. Степень изменения значений выборки определяется путем вычисления их дисперсии и стандартного отклонения.

Дисперсия и квадратный корень из дисперсии, называемый стандартным отклонением, характеризуют среднее отклонение от среднего значения выборки. Среди этих двух величин наибольшее значение имеет стандартное отклонение. Это значение можно представить как среднее расстояние, на котором находятся элементы от среднего элемента выборки.

Дисперсию трудно интерпретировать содержательно. Однако, квадратный корень из этого значения является стандартным отклонением и хорошо поддается интерпретации.

Стандартное отклонение вычисляется путем определения сначала дисперсии и затем вычисления квадратного корня из дисперсии.

Например, для массива данных, приведенных на рисунке, будут получены следующие значения:

Рисунок 1

Здесь среднее значение квадратов разностей равно 717,43. Для получения стандартного отклонения осталось лишь взять квадратный корень из этого числа.

Результат составит приблизительно 26,78.

Следует помнить, что стандартное отклонение интерпретируется как среднее расстояние, на котором находятся элементы от среднего значения выборки.

Стандартное отклонение показывает, насколько хорошо среднее значение описывает всю выборку.

Допустим, Вы являетесь руководителем производственного отдела по сборке ПК. В квартальном отчете говорится, что выпуск за последний квартал составил 2500 ПК. Плохо это или хорошо? Вы попросили (или уже в отчете есть эта графа) в отчете отобразить стандартное отклонение по этим данным. Цифра стандартного отклонения, например, равна 2000. Становится понятным для Вас, как руководителя отдела, что производственная линия требует лучшего управления (слишком большие отклонения по количеству собираемых ПК).

Вспомним: при большой величине стандартного отклонения данные широко разбросаны относительно среднего значения, а при маленькой – они группируются близко к среднему значению.

Четыре статистические функции ДИСП(), ДИСПР(), СТАНДОТКЛОН() и СТАНДОТКЛОНП() – предназначены для вычисления дисперсии и стандартного отклонения чисел в интервале ячеек. Перед тем как вычислять дисперсию и стандартное отклонение набора данных, нужно определить, представляют ли эти данные генеральную совокупность или выборку из генеральной совокупности. В случае выборки из генеральной совокупности следует использовать функции ДИСП() и СТАНДОТКЛОН(), а в случае генеральной совокупности – функции ДИСПР() и СТАНДОТЛОНП():



 

Генеральная совокупность Функция
ДИСПР()
СТАНДОТЛОНП()
Выборка
ДИСП()
СТАНДОТКЛОН()

Дисперсия (а так же стандартное отклонение), как мы отмечали, свидетельствуют о том, в какой степени входящие в набор данных величины разбросаны вокруг среднего арифметического.

Малое значение дисперсии или стандартного отклонения говорит о том, что все данные сосредоточены вокруг среднего арифметического, а большое значение этих величин – о том, что данные разбросаны в широком диапазоне значений.

Дисперсию достаточно трудно интерпретировать содержательно (что значит малое значение, большое значение?). Выполнение Задания 3позволит визуально, на графике, показать смысл дисперсии для набора данных.

 

Задания

· Задание 1.

· 2.1. Дать понятия: дисперсия и стандартное отклонение; их символьное обозначение при статистической обработке данных.

· 2.2. Оформить рабочий лист в соответствии с рисунком 1 и произвести необходимые расчеты.

· 2.3. Привести основные формулы, используемые при расчетах

· 2.4. Пояснить все обозначения ( , , , )

· 2.5. Пояснить практическое значение понятия дисперсия и стандартное отклонение.

Задание 2.

1.1. Дать понятия: генеральная совокупность и выборка; математическое ожидание и среднее арифметическое их символьное обозначение при статистической обработке данных.

1.2. В соответствии с рисунком 2 оформить рабочий лист и произвести расчеты.

1.3. Привести основные формулы, используемые при расчетах (для генеральной совокупности и выборке).

 

Рисунок 2

1.4. Объяснить, почему возможны получения таких значений средних арифметических в выборках как 46,43 и 48,78 (см. файл Приложение). Сделать выводы.

 

Задание 3.

Имеется две выборки с различным набором данных, но среднее для них будет одинаковым:

Рисунок 3

Рисунок 4 Рисунок 5
Видно, что практически разброса нет. Значение дисперсии 0,008 и стандартного отклонения – 0,089. Все очень наглядно. Разброс данных явный, что подтверждает значение дисперсии – 2,19 и стандартного отклонения – 1,709

 

3.1. Оформить рабочий лист в соответствии с рисунком 3 и произвести необходимые расчеты.

3.2. Приведите основные формулы расчета.

3.3. Постройте графики в соответствии с рисунками 4, 5.

3.4. Поясните полученные зависимости.

3.5. Аналогичные вычисления проведите для данных двух выборок.

Исходная выборка 11119999

Значения второй выборки подбираете так, что бы среднее арифметическое для второй выборки было таким же, например,:

Подберите значения для второй выборки самостоятельно. Оформите вычисления и построения графиков подобно рисункам 3, 4, 5. Покажите основные формулы, которые использовали при вычислениях.

Сделайте соответствующие выводы.

 

Все задания оформить в виде отчета со всеми необходимыми рисунками, графиками, формулами и краткими пояснениями.

Примечание: построение графиков обязательно пояснить с рисунками и краткими пояснениями.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.