МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Сопротивление грунтов сдвигу при трехосном сжатии





 

Существуют способы определения показателей сопротивления грунтов сдвигу, основанные на раздавливании образцов грунта в приборе трехосного сжатия – стабилометре, в условиях всестороннего давления. В этом случае сдвиг грунта происходит не по заранее фиксированным плоскостям, как в срезном приборе, а по площадкам, на которых действуют касательные напряжения, способные преодолеть сопротивление грунта сдвигу.

Горизонтальное давление на образец грунта s2 создается жидкостью, заполняющей прибор, а вертикальное s1 – внешней нагрузкой от штампа прибора. Постепенно доводя грунт до разрушения, находят показатели, характеризующие предельное состояние грунта. При этом горизонтальные и вертикальные напряжения представляют собой главные напряжения, зная величину которых, можно найти касательные напряжения, вызвавшие сдвиг грунта по площадкам, расположенным под углом 45о - к главному напряжению.

Испытание грунтов на трехосное сжатие производят по стандартной методике (см.рис.2.11): цилиндрический образец грунта 1, заключенный в резиновую оболочку 2, предварительно подвергают всестороннему давлению, равному s2 = s3, затем, после загасания деформации от всестороннего давления, прикладывают осевую нагрузку Р увеличивающимися ступенями до разрушения образца или потери им устойчивости.

По результатам испытаний можно определить значения эффективных напряжений в момент разрушения образца

(2.41)

Зная главные напряжения в момент разрушения образца, строят круги напряжений Мора (рис.2.26).

 

 

Рис.2.26. Круги Мора, построенные по результатам испытаний образцов грунта на сжатие в стабилометре:

а – сыпучие грунты;

б – связные грунты

 

 

Величина сдвигающих напряжений не может быть больше предельного значения, определяемого по уравнениям (2.39) или (2.40) и соответствующего возникновению беспрерывного скольжения (сдвига) одной части грунта по другой:

,

.

Эти значения напряжений на предельной прямой отвечают некоторой экспериментальной точке М, которая одновременно должна принадлежать и кругу предельных напряжений Мора. Это возможно лишь в том случае, когда прямая ОМ (см.рис.2.26,а) или О1М (см.рис.2.26,б) будет касательной к кругу напряжений, то есть составит с радиусом круга в точке касания угол в 90о и пройдет через начало координат O или О/.

Зная величины главных напряжений s1 и s2 и учитывая, что на кривой сдвига треугольники ОМС или О/МC прямоугольные, получим для сыпучих грунтов

,

а учитывая, что

и ,

получим

. (2.42)

Для связных грунтов

или

. (2.43)

Уравнения (2.42) и (2.43) представляют собой математическое выражение условия предельного равновесия (условие прочности Мора) соответственно сыпучих и связных грунтов. Эти уравнения широко используются при определении предельной нагрузки на грунт, в расчетах устойчивости массивов грунта и в расчетах давления грунта на ограждения.

Кроме того, по данным испытаний в стабилометре определяют значение относительной продольной деформации

,

где Si – осадка для любой ступени нагрузки; h – первоначальная высота образца грунта.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.