МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Виды письменной нумерации. Системы счисления.





 

Изображение любого натурального числа возможно с помощью небольшого количества индивидуаль­ных знаков. Этого можно было бы достичь с помощью одного знака - 1 (единицы). Каждое натуральное число тогда запи­сывалось бы повторением символа единицы столько раз, сколь­ко в этом числе вмещается единиц. Сложение сводилось бы к простому приписыванию единиц, а вычитание - к вычерки­ванию (вытиранию) их. Идея, лежащая в основе такой систе­мы, проста, однако эта система очень неудобна. Для записи больших чисел она практически не пригодна, и ею пользуют­ся только народы, у которых счет не выходит за пределы од­ного-двух десятков.

С развитием человеческого общества увеличиваются зна­ния людей и все больше становится потребность считать и записывать результаты счета довольно больших множеств, измерения больших величин.

У первобытных людей не было письменности, не было ни букв, ни цифр, каждую вещь, каждое действие изобра­жали рисунком. Это были реальные рисунки, отображающие то или другое количество. Постепенно они упрощались, ста­новились все более удобными для записи. Речь идет о записи чисел иероглифами. Иероглифы древних египтян свидетель­ствуют о том, что искусство счета было развито у них доста­точно высоко, с помощью иероглифов изображались боль­шие числа. Однако для дальнейшего усовершенствования счета было необходимо перейти к более удобной записи, которая позволяла бы обозначать числа специальными, более удоб­ными знаками (цифрами). Происхождение цифр у каждого народа различное.

Первые цифры встречаются более чем за 2 тыс. лет до н.э. в Вавилоне. Вавилоняне писали палочками на плитах из мяг­кой глины и потом свои записи высушивали. Письменность древних вавилонян называлась клинописью. Клинышки раз­мещались и горизонтально, и вертикально в зависимости от их значения. Вертикальные клинышки обозначали единицы, а горизонтальные, так называемые десятки - единицы вто­рого разряда.

Некоторые народы для записи чисел использовали буквы. Вместо цифр писали начальные буквы слов-числительных. Такая нумерация, например, была у древних греков. По име­ни ученого, который предложил ее, она вошла в историю культуры под названием геродианова нумерация. Так, в этой нумерации число «пять» называлось «pinta» и обозначалось буквой «Р», а число десять называлось «deka» и обозначалось буквой «Д». В настоящее время этой нумерацией не пользуется никто. В отличие от нее римская нумерация сохранилась и дошла до наших дней. Хотя теперь римские цифры встречают­ся не так часто: на циферблатах часов, для обозначения глав в книгах, столетий, на старых строениях и т.д. В римской нуме­рации есть семь узловых знаков: I, V, X, L, С, D, М.

Можно предположить, как появились эти знаки. Знак (1) - единица - это иероглиф, который изображает I па­лец (каму), знак V - изображение руки (запястье руки с; отставленным большим пальцем), а для числа 10 - изобра­жение вместе двух пятерок (X). Чтобы записать числа II, III, IV, пользуются теми же самыми знаками, отображая действия с ними. Так, числа II и III повторяют единицу соответствующее число раз. Для записи числа IV перед пя­тью ставится I. В этой записи единица, поставленная перед пятеркой, вычитается из V, а единицы, поставленные за ней прибавляются к ней. И точно так же единица, записанная перед десятью (X), отнимается от десяти, а та, что стоит справа - прибавляется к ней. Число 40 обозначается XL. В этом случае от 50 отнимается 10. Для записи числа 90 от 100 отнимается 10 и записывается ХС.



Римская нумерация весьма удобна для записи чисел, но почти не пригодна для проведения вычислений. Никаких действий в письменном виде (расчеты «столбиками» и дру­гие приемы вычислений) с римскими цифрами проделать практически невозможно. Это очень большой недостаток римской нумерации.

У некоторых народов запись чисел осуществлялась буква­ми алфавита, которыми пользовались в грамматике. Эта за­пись имела место у славян, евреев, арабов, грузин.

Алфавитная система нумерации впервые была использо­вана в Греции. Самую древнюю запись, сделанную по этой системе, относят к середине V в. до н.э. Во всех алфавитных системах числа от 1 до 9 обозначали индивидуальными сим­волами с помощью соответствующих букв алфавита. В гре­ческой и славянской нумерациях над буквами, которые обо­значали цифры, чтобы отличить числа от обычных слов, ставилась черточка «титло» (~). Например, а, б, в и т.д. Все числа от 1 до 999 записывали на основе принципа при­бавления из 27 индивидуальных знаков для цифр.

Следы алфавитной системы сохранились до нашего вре­мени. Так, часто буквами мы нумеруем пункты докладов, резолюций и т.д. Однако алфавитный способ нумерации со­хранился у нас только для обозначения порядковых числи­тельных. Количественные числа мы никогда не обозначаем буквами, тем более никогда не оперируем с числами, запи­санными в алфавитной системе.

Старинная русская нумерация также была алфавитной. Славянское алфавитное обозначение чисел возникло в X в.

Сейчас существует индийская система записи чисел. Заве­зена она в Европу арабами, поэтому и получила название арабской нумерации. Арабская нумерация распространилась по всему миру, вытеснив все другие записи чисел. В этой нумера­ции для записи чисел используется 10 значков, которые на­зываются цифрами Девять из них обозначают числа от 1 до 9.

Десятый значок - нуль (0) - означает отсутствие определен­ного разряда чисел. С помощью этих десяти знаков можно за­писать какие угодно большие числа. До XVIII в. на Руси пись­менные знаки, кроме нуля, назывались знамениями.

Итак, у народов разных стран была различная письмен­ная нумерация: иероглифическая - у египтян; клинопис­ная - у вавилонян; геродианова - у древних греков, фи­никийцев; алфавитная - у греков и славян; римская - в западных странах Европы; арабская - на Ближнем Востоке. Следует сказать, что теперь почти везде используется араб­ская нумерация.

Анализируя системы записи чисел (нумерации), которые имели место в истории культур разных народов, можно сде­лать вывод о том, что все письменные системы делятся на две большие группы: позиционные и непозици­онные системы счисления.

К непозиционным системам счисления принад­лежат: запись чисел иероглифами, алфавитная, римская и некоторые другие системы. Непозиционная система счисле­ния - это такая система записи чисел, когда содержание каждого символа не зависит от места, на котором он напи­сан. Эти символы являются как бы узловыми числами, а алгорифмические числа комбинируются из этих символов. Например, число 33 в непозиционной римской нумерации записывается так: XXXIII. Здесь знаки X (десять) и I (еди­ница) используются в записи числа каждый по три раза. Причем каждый раз этот знак обозначает ту же самую вели­чину: X - десять единиц, I - единица, независимо от мес­та, на котором они стоят в ряду других знаков.

В позиционных системах каждый знак имеет раз­ное значение в зависимости от того, на котором месте в записи числа он стоит. Например, в числе 222 цифра «2» повторяется трижды, но первая цифра справа обозначает две единицы, вторая — два десятка, а третья - две сотни. В этом случае мы имеем в виду десятичную систему счисления. Наря­ду с десятичной системой счисления в истории развития математики имели место двоичная, пятиричная, двадцати­ричная и др.

Позиционные системы счисления удобны тем, что они дают возможность записывать большие числа с помощью сравнительно небольшого количества знаков. Важное пре­имущество позиционных систем - простота и легкость вы­полнения арифметических операций над числами, записан­ными в этих системах.

Появление позиционных систем обозначения чисел было одной из основных вех в истории культуры. Следует сказать, что это произошло не случайно, а как закономерная ступень в культурном развитии народов. Подтверждением этого яв­ляется самостоятельное возникновение позиционных систем у разных народов: у вавилонян - более чем за 2 тыс. лет до н.э.; у племен майя (центральная Америка) - в начале но­вой эры; у индусов - в IV-VI в. н.э.

Происхождение позиционного принципа, прежде всего, следует пояснить появлением мультипликативной формы за­писи. Мультипликативная запись - это запись с помощью умножения. Кстати, эта запись появилась одновременно с изобретением первого счетного прибора, который у славян назывался абак. Так, в мультипликативной записи число 154 можно записать: 1 x 104 – 5 x 10 + 4. Как видим, в этой записи отображается тот факт, что при счете некоторые количества единиц первого разряда, в данном случае десять единиц, бе­рутся за одну единицу следующего разряда, определенное количество единиц второго разряда берется, в свою очередь, за единицу третьего разряда и т.д. Это позволяет для изобра­жения количества единиц разных разрядов использовать одни и те же числовые символы. Эта же запись возможна при счете любых элементов конечных множеств.

В пятиричной системе счет осуществляется «пятками» - по пять. Так, африканские негры считают на камушках или орехах и складывают их в кучи по пять предметов в каждой. Пять таких куч они объединяют в новую кучку и т.д. При этом сначала пересчитывают камушки, потом кучки, лотом большие кучи. При таком способе счета подчеркивается то обстоятельство, что с кучами камешков следует произво­дить те же самые операции, что и с отдельными камешками.

Технику счета по этой системе иллюстрирует русский пу­тешественник Миклухо-Маклай. Так, характеризуя процесс пересчитывания товара туземцами Новой Гвинеи, он пишет, что чтобы посчитать количество полосок бумаги, которые обозначали число дней до возвращения корвета «Витязь», папуасы делали следующее: первый, раскладывая полоски бумаги на коленях, при каждом откладывании повторял «каре» (один), «каре» (два) и так до десяти, второй повто­рял это же слово, но при этом загибал пальцы сначала на одной, потом на другой руке. Досчитав до десяти и загнувши пальцы обеих рук, папуас опускал оба кулака на колени, проговаривая «ибен каре» - две руки. Третий папуас при этом загибал один палец на руке. С другим десятком было выполнено то же самое, причем третий папуас загибал вто­рой палец, а для третьего десятка - третий палец и т.д. По­добный счет имел место и у других народов. Для такого счета необходимы были не менее чем три человека. Один считал единицы, другой - десятки, третий - сотни. Если же заме­нить пальцы тех, кто считал, камушками, помещенными в разные выемки глиняной доски или нанизанными на прути­ки, то получился бы самый простой счетный прибор.

Со временем названия разрядов при записи чисел начали пропускать. Однако для завершения позиционной системы недоставало последнего шага - введения нуля. При сравни­тельно небольшой основе счета, какой было число 10, и оперировании сравнительно большими числами, особенно после того как названия разрядных единиц начали пропус­кать, введение нуля стало просто необходимым. Символ нуля сначала мог быть изображением пустого жетона абака или видоизмененной простой точки, которую могли поставить на месте пропущенного разряда. Так или иначе, однако вве­дение нуля было совершенно неизбежным этапом законо­мерного процесса развития, который и привел к созданию современной позиционной системы.

В основе системы счисления может быть любое число, кро­ме 1 (единицы) и 0 (нуля). В Вавилоне, например, было число 60. Если за основу системы счисления берется большое число, то запись числа будет очень короткой, однако выполнение арифметических действий будет более сложным. Если же, на­оборот, взять число 2 или 3, то арифметические действия выполняются очень легко, но сама запись станет громоздкой. Можно было бы заменить десятичную систему на более удоб­ную, но переход к ней был бы связан с большими трудно­стями: прежде всего довелось бы перепечатывать заново все научные книги, переделывать все счетные приборы и маши­ны. Вряд ли такая замена была бы целесообразной. Десятичная система стала привычной, а значит, и удобной.

Счетные приборы

 

Самыми древними приборами для облегчения счета и вы­числений были человеческая рука и камешки. Благодаря сче­ту на пальцах возникли пятиричная и десятиричная (деся­тичная) системы счисления. Верно подмечено ученым мате­матиком Н.Н. Лузиным, что «преимущества десятичной системы не математические, а зоологические. Если бы у нас на руках было не десять пальцев, а восемь, то человечество пользовалось бы восьмиричной системой».

В практической деятельности при счете предметов люди использовали камушки, бирки с зарубками, веревки с узел­ками и др. Первым и более усовершенствованным устрой­ством, специально предназначенным для вычислений, был простой абак, с которого и началось развитие вычислитель­ной техники. Счет с помощью абака, известный уже в Ки­тае, Древнем Египте и Древней Греции задолго до нашей эры, просуществовал многие тысячелетия, когда на смену абаку пришли письменные вычисления. При этом следует заметить, что абак служил не столько для облегчения соб­ственно вычислений, сколько для запоминания промежу­точных результатов.

Известно несколько разновидностей абака: греческий, ко­торый был выполнен в виде глиняной дощечки, на которой твердым предметом проводили линии и в получившиеся уг­лубления (бороздки) клали камешки. Еще более простым был римский абак, на котором камешки могли передвигаться не по желобам, а просто по линиям, нанесенным на доске.

В Китае похожий на абак прибор называли суан-пан, а в Японии - соробан. Основой для этих приборов были шарики, нанизанные на прутики; счетные таблицы, состоящие из горизонтальных линий, соответствующих единицам, де­сяткам, сотням и т.д., и вертикальных, предназначенных для отдельных слагаемых и сомножителей. На эти линии вык­ладывались жетоны - до четырех.

У наших предков тоже был абак - русские счеты. Они появились в XVI-XVII вв., ими пользуются и в наши дни. Основная заслуга изобретателей абака состоит в использова­нии позиционной системы счисления.

Следующим важным этапом в развитии вычислительной техники было создание суммирующих машин и арифмомет­ров. Такие машины были сконструированы независимо друг от друга разными изобретателями.

В рукописях итальянского ученого Леонардо да Винчи (1452-1519) имеется эскиз 13-разрядного суммирующего устройства. Немецким ученым В. Шикардом (1592-1636) был разработан 6-разрядный эскиз, а сама машина была построена примерно в 1623 году. Следует отметить, что эти изобретения стали известны только в середине XX в., по­этому никакого влияния на развитие вычислительной тех­ники они не оказали. Считалось, что первую суммирую­щую машину (8-разрядную) сконструировал в 1641 году, а построил в 1645 году Б. Паскаль. По этому проекту было налажено их серийное производство. Несколько экземпля­ров этих машин сохранилось до наших дней. Достоинством их было то, что они позволяли выполнять все четыре ариф­метических действия: сложение, вычитание, умножение и деление.

Под термином «вычислительная техника» понимают со­вокупность технических систем, т.е. вычислительных машин, математических средств, методов и приемов, используемых для облегчения и ускорения решения трудоемких задач, свя­занных с обработкой информации (вычислениями), а также отрасль техники, занимающейся разработкой и эксплуата­цией вычислительных машин. Основные функциональные элементы современных вычислительных машин, или ком­пьютеров, выполнены на электронных приборах, поэтому их называют электронными вычислительными машинами - ЭВМ. По способу представления информации вычислитель­ные машины делят на три группы;

- аналоговые вычислительные машины (АВМ), в кото­рых информация представляется в виде непрерывно изменя­ющихся переменных, выраженных какими-либо физичес­кими величинами;

- цифровые вычислительные машины (ЦВМ), в которых информация представляется в виде дискретных значений пе­ременных (чисел), выраженных комбинацией дискретных зна­чений какой-либо физической величины (цифры);

- гибридные вычислительные машины (ГВМ), в кото­рых используются оба способа представления информации.

Первое аналоговое вычислительное устройство появилось в XVII в. Это была логарифмическая линейка.

В XVIII-XIX вв. продолжалось совершенствование меха­нических арифмометров с электрическим приводом. Это усо­вершенствование носило чисто механический характер и с переходом на электронику утратило свое значение. Исклю­чение составляют лишь машины английского ученого Ч. Бебиджа: разностные (1822 г.) и аналитические (1830 г.).

Разностная машина предназначалась для табулирования многочленов и с современной точки зрения была специали­зированной вычислительной машиной с фиксированной (же­сткой) программой. Машина имела «память» - несколько регистров для хранения чисел. При выполнении заданного числа шагов вычислений срабатывал счетчик числа опера­ций - раздавался звонок. Результаты выводились на печать - печатающее устройство. Причем по времени эта операция совмещалась с вычислениями.

При работе над разностной машиной Ч. Бебидж пришел к идее создания цифровой вычислительной машины для вы­полнения разнообразных научных и технических расчетов. Работая автоматически, эта машина выполняла заданную программу. Автор назвал эту машину аналитической. Данная машина - прообраз современных ЭВМ. Аналитическая ма­шина Ч. Бебиджа включала в себя следующие устройства:

- для хранения цифровой информации (теперь это назы­вается запоминающим устройством);

- для выполнения операций над числами (теперь это арифметическое устройство);

- устройство, для которого Ч. Бебидж не придумал назва­ния и которое управляло последовательностью действий ма­шины (сейчас это устройство управления);

- для ввода и вывода информации.

В качестве носителей информации при вводе и выводе Ч. Бе­бидж предполагал использовать перфорированные карточки (перфокарты) типа тех, которые применяются в управле­нии ткацким станком. Ч. Бебидж предусмотрел ввод в машину таблиц значений функций с контролем. Выходная информа­ция могла печататься, а также пробиваться на перфокартах, что давало возможность при необходимости снова вводить ее в машину.

Таким образом, аналитическая машина Ч. Бебиджа была пер­вой в мире программно-управляемой вычислительной ма­шиной. Для этой машины были составлены и первые в мире программы. Первым программистом была дочь английского поэта Байрона - Августа Ада Лавлейс (1815-1852). В ее честь один из современных языков программирования называется «Ада».

Первой электронно-вычислительной машиной принято считать машину, разработанную в Пенсинвальском универ­ситете США. Эта машина ЭНИАК была построена в 1945 году, имела автоматическое программное управление. Недо­статком этой машины было отсутствие запоминающего уст­ройства для хранения команд.

Первой ЭВМ, обладающей всеми компонентами совре­менных машин, была английская машина ЭДСАК, постро­енная в 1949 году в Кембриджском университете. В запоми­нающем устройстве этой машины размещаются числа (запи­санные в двоичном коде) и сама программа. Благодаря числовой форме записи команд программы машина может производить различные операции.

Под руководством С.А. Лебедева (1902-1974) была раз­работана первая отечественная ЭВМ (электронная вычисли­тельная машина). МЭСМ выполняла всего 12 команд, номинальная скорость действий - 50 операций в секунду. Оперативная память МЭСМ могла хранить 31 семнадцати­разрядное двоичное число и 64 двадцатиразрядные команды. Кроме этого, имелись внешние запоминающие устройства. В 1966 году под руководством этого же конструктора была разработана большая электронно-счетная машина (БЭСМ).

Электронно-вычислительные машины используют раз­личные языки программирования - это система обозначе­ний для описания данных информации и программ (алго­ритмов).

Программа на машинном языке имеет вид таблицы из цифр, каждая ее строчка соответствует одному оператору - машинной команде. При этом в команде, например, пер­вые несколько цифр являются кодом операции, т.е. указы­вают машине, что надо делать (складывать, умножать и т.д.), а остальные цифры указывают, где именно в памяти машины находятся нужные числа (слагаемые, сомножите­ли) и где следует запомнить результат операций (сумму произведений и т.д.).

Язык программирования задается тремя компонентами: алфавитом, синтаксисом и семантикой.

Большинство языков программирования (БЕЙСИК, ФОРТРАН, ПАСКАЛЬ, АДА, КОБОЛ, ЛИСП), разрабо­танных к настоящему времени, являются последовательны­ми. Программы, написанные на них, представляют собой последовательность приказов (инструкций). Они последова­тельно, один за другим, обрабатываются на машине при по­мощи так называемых трансляторов.

Производительность вычислительных машин будет повы­шаться за счет параллельного (одновременного) выполне­ния операций, тогда как большинство существующих язы­ков программирования рассчитано на последовательное вы­полнение операций. Поэтому будущее, видимо, за такими языками программирования, которые позволят описывать саму решаемую задачу, а не последовательность выполнения операторов.

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.