МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

КОСВЕННЫЕ ИЗМЕРЕНИЯ ПРИ ЛИНЕЙНОЙ ЗАВИСИМОСТИ





РЕКОМЕНДАЦИЯ

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ИЗМЕРЕНИЯ КОСВЕННЫЕ

ОПРЕДЕЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИИ И ОЦЕНИВАНИЕ ИХ ПОГРЕШНОСТЕЙ

МИ 2083-90

Москва

КОМИТЕТ СТАНДАРТИЗАЦИИ И МЕТРОЛОГИИ СССР

Содержание

1. ОБЩИЕ ПОЛОЖЕНИЯ 2. КОСВЕННЫЕ ИЗМЕРЕНИЯ ПРИ ЛИНЕЙНОЙ ЗАВИСИМОСТИ 3. КОСВЕННЫЕ ИЗМЕРЕНИЯ ПРИ НЕЛИНЕЙНОЙ ЗАВИСИМОСТИ 4. МЕТОД ПРИВЕДЕНИЯ 5. ФОРМЫ ПРЕДСТАВЛЕНИЯ РЕЗУЛЬТАТА ИЗМЕРЕНИЯ ПРИЛОЖЕНИЕ 1 Справочное ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ, ИСПОЛЬЗУЕМЫЕ В РЕКОМЕНДАЦИИ ПРИЛОЖЕНИЕ 2 Справочное КРИТЕРИЙ ОТСУТСТВИЯ КОРРЕЛЯЦИОННОЙ СВЯЗИ МЕЖДУ ПОГРЕШНОСТЯМИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИИ АРГУМЕНТОВ ПРИЛОЖЕНИЕ 3 Справочное

РЕКОМЕНДАЦИЯ

ГСИ. ИЗМЕРЕНИЯ КОСВЕННЫЕ Определение результатов измерений и оценивание их погрешностей МИ 2083-90

Дата введения 01.01.92

Настоящая рекомендация распространяется на нормативно-техническую документацию, содержащую методики выполнения косвенных измерений, и устанавливает основные положения определения результатов измерений и оценивание их погрешностей при условии, что аргументы, от которых зависит измеряемая величина, принимаются за постоянные физические величины; известные систематические погрешности результатов измерений аргументов исключены, а неисключенные систематические погрешности распределены равномерно внутри заданных границ ± θ.

Термины и определения, используемые в настоящей рекомендации, приведены в приложении 1.

ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Искомое значение физической величины А находят на основании результатов измерений аргументов а1, . . . , аi, . . . , аm, связанных с искомой величиной уравнением

. (1)

Функция f должна быть известна из теоретических предпосылок или установлена экспериментально с погрешностью, которой можно пренебречь.

1.2. Результаты измерений аргументов и оценки их погрешностей могут быть получены из прямых, косвенных, совокупных, совместных измерений. Сведения об аргументах могут быть взяты из справочной литературы, технической документации.

1.3. При оценивании доверительных границ погрешностей результата косвенного измерения обычно принимают вероятность, равную 0,95 или 0,99. Использование других вероятностей должно быть обосновано.

1.4. Основные положения рекомендации устанавливаются для оценивания косвенно измеряемой величины и погрешностей результата измерения:

при линейной зависимости и отсутствии корреляции между погрешностями измерений аргументов (разд. 2);

при нелинейной зависимости и отсутствии корреляции между погрешностями измерений аргументов (разд. 3);

для коррелированных погрешностей измерений аргументов при наличии рядов отдельных значений измеряемых аргументов (разд. 4).

Примечание. Критерий проверки гипотезы об отсутствии корреляции между погрешностями измерений аргументов приведен в приложении 2.

КОСВЕННЫЕ ИЗМЕРЕНИЯ ПРИ ЛИНЕЙНОЙ ЗАВИСИМОСТИ

2.1. Искомое значение A связано с m измеряемыми аргументами a1, a2, . . . , am уравнением

A = b1a1 + b2 · a2, + ...+ bm · am , (2)

где b1, b2,..., bm - постоянные коэффициенты при аргументах a1, a2 . . . , am соответственно.

Корреляция между погрешностями измерений аргументов отсутствует.

Примечание. Если коэффициенты b1, b2,..., bm определяют экспериментально, то задача определения результата измерения величины решается поэтапно: сначала оценивают каждое слагаемое bi·ai; как косвенно измеряемую величину, полученную в результате произведения двух измеряемых величин, а потом находят оценку измеряемой величины A.



2.2. Результат косвенного измерения вычисляют по формуле

(3)

где - результат измерения аргумента аi; m - число аргументов.

2.3. Среднее квадратическое отклонение результата косвенного измерения вычисляют по формуле

(4)

где - среднее квадратическое отклонение результата измерения аргумента ai .

2.4. Доверительные границы случайной погрешности результата косвенного измерения при условии, что распределения погрешностей результатов измерений аргументов не противоречат нормальным распределениям, вычисляют (без учета знака) по формуле

(5)

где tq, - коэффициент Стьюдента, соответствующий доверительной вероятности P = l - q и числу степеней свободы fэф , вычисляемому по формуле

(6)

где ni, - число измерений при определении аргумента ai, .

2.5. Границы неисключенной систематической погрешности результата косвенного измерения вычисляют следующим образом.

2.5.1. Если неисключенные систематические погрешности результатов измерений аргументов заданы границами θi; то доверительные границы неисключенной систематической погрешности результата косвенного измерения Θ(p) (без учета знака) при вероятности P вычисляют по формуле

(7)

где k - поправочный коэффициент, определяемый .принятой доверительной вероятностью и числом m составляющих Θi.

При доверительной вероятности Р = 0,95 поправочный коэффициент k принимают равным 1,1.

При доверительной вероятности Р = 0,99 поправочный коэффициент принимают равным 1,4, если число суммируемых составляющих m>4. Если же число составляющих m≤4, то поправочный коэффициент k≤1,4; более точное значение k можно найти с помощью графика зависимости

k=k(l,m) ,

где m - число суммируемых составляющих (аргументов); l - параметр, зависящий от соотношения границ составляющих.

На графике кривая 1 дает зависимость k от l при m = 2, кривая 2 - при m = 3, кривая 3 - при m = 4.

Для нахождения k границы составляющих biΘi, располагают в порядке возрастания: b1Θ1b2Θ2b3Θ3b4Θ4 и вычисляют отношения границ: l = b2Θ2/b1Θ1, l2 = bmΘm/bm-1Θm-1. Затем по графику определяют значения k1 = k (l1, m) и k2 = k (l2, m); в качестве поправочного коэффициента принимают наибольшее из k1 и k2.

Погрешность, возникающая при использовании формулы (7) для суммирования неисключенных систематических погрешностей, не превышает 5 % (расчеты получены на основе анализа результатов композиций равномерных распределений).

2.5.2. Если границы неисключенных систематических погрешностей результатов измерений аргументов заданы доверительными границами, соответствующими вероятностям Pi, (границы неисключенных систематических погрешностей результатов измерений аргументов вычислены по формуле (7), то границы неисключенной систематической погрешности результата косвенного измерения для вероятности P вычисляют (без учета знака) по формуле

(8)

Для вероятности P = 0,95 ki = 1,1; для Р = 0,99 значения коэффициентов ki определяют в соответствии с п. 2.5.1.

2.6. Погрешность результата косвенного измерения оценивают на основе композиции распределений случайных и неисключенных систематических погрешностей.

2.6.1. Если , то за погрешность результата косвенного измерения принимают неисключенную систематическую составляющую погрешности измерения и ее границы вычисляют в соответствии с п. 2.5.

2.6.2. Если , за погрешность результата косвенного измерения принимают случайную составляющую погрешности измерения и ее границы вычисляют в соответствии с п. 2.4.

2.6.3. Если , то доверительную границу погрешности результата косвенного измерения ∆(P) вычисляют (без учета знака) по формуле

∆(P) = K(ε(P)+Θ(P)) , (9)

где K - коэффициент, зависящий от доверительной вероятности и от отношения .

Значения коэффициента K в зависимости от отношения для вероятности P = 0,95 и P = 0,99:

0,5 0,75
K (для Р=0,95) 0,81 0,77 0,74 0,71 0,73 0,76 0,78 0,79 0,80 0,81
K (для Р=0,99) 0,87 0,85 0,82 0,80 0,81 0,82 0,83 0,83 0,84 0,85

Примечание. Погрешность, возникающая при использовании формулы (9) для суммирования случайных и неисключенных систематических погрешностей, не превышает 12%





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.