МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ (АРЕНЫ)





Лекция 9.

 

Ароматическими первоначально называли органические соедине­ния, которые или сами имели приятный запах, или же выделялись из природных вешеств, обладающих приятным запахом. Впоследствии среди них были обнаружены соединения с приятным и неприятным запахом, а также соединения без запаха. Однако название за большой группой органических соединений, проявляющих сходные с бензолом свойства, сохранилось.

К ароматическим углеводородам или аренам относятся соединения, молекулы которых содержат одно или несколько бензольных колец.

В зависимости от числа бензольных циклов, входящих в состав молекулы, различают одноядерные (моноциклические) и многоядер­ные (полициклические) арены.

МОНОЯДЕРНЫЕ АРЕНЫ

Простейшим представителем одноядерных ароматических соеди­нений является бензол (С6Н6).

Впервые бензол был получен английским ученым М. Фарадеем в 1825 г. из светильного газа, образующегося в процессе переработки каменного угля. Однако строение его молекулы в течение многих лет оставалось загадкой для химиков. Несмотря на то, что формула С6Н6 предполагает достаточно выраженный ненасыщенный характер, бен­зол, в отличие от непредельных соединений, оказался относительно инертным веществом. Он сравнительно устойчив к нагреванию и дей­ствию окислителей, практически не вступает в характерные для нена­сыщенных соединений реакции присоединения. Наоборот, для бен­зола более характерными оказались не свойственные непредельным соединениям реакции замещения.

Составу С6Н6 приписывались разные структурные формулы, но все они не объясняли в полной мере химических свойств бензола.

В 1865 г. немецкий химик Кекуле предложил формулу бензола, пред­ставляющую собой цикл из шести атомов углерода с чередующимися простыми и двойными связями:

Формула Кекуле предполагает равноценность всех атомов углеро­да и водорода в молекуле.

В соответствии с формулой Кекуле бензол должен иметь два 1,2- дизамещенных изомера:

Экспериментально же было установлено, что 1,2-дизамещенные производные бензола не имеют изомеров положения, т. е. они суще­ствуют в виде одного соединения.

Для объяснения этого противоречия в 1872 г. Кекуле выдвинул ос- цилляционную гипотезу, согласно которой двойные связи в молекуле не фиксированы, а непрерывно перемещаются (осциллируют) между двумя возможными положениями:

Правильно отображая некоторые свойства бензола, формула Ке­куле тем не менее не согласовывалась с рядом установленных фактов. Все это возвращало химиков к пересмотру структуры бензола.

В соответствии с современными представлениями, основанными на данных квантовой химии и физико-химических исследований, мо­лекула бензола представляет собой правильный плоский шестиуголь­ник. Все углеродные атомы находятся в состоянии sp2-гибридизации. За счет sp2-гибридизованных атомных орбиталей каждый атом углерода образует три σ-связи (одну с атомом водорода и две с соседними атома­ми углерода). Негибридизованная р-атомная орбиталь участвует в об­разовании ароматического секстета. Облака р-электронов имеют фор­му объемной восьмерки и расположены перпендикулярно плоскости цикла, которая разделяет их пополам.

 

Если посмотреть на проекцию π-электронной плотности сверху, то мы можем увидеть такую картину:



 

Образование замкнутой сопряженной системы (ароматического секстета) является для молекулы бензола энергетически выгодным. Экспериметально установлено, что сопряжение в цикле приводит к уменьшению энергии на 150.7 кДж/моль, по сравнению с рассчитанной для циклогексатриена. Эта разность составляет энергию сопряжения.

В бензольном кольце нет простых и двойных связей в прямом понима­нии этого слова. Такую связь называют ароматической. Если длина про­стой связи С—С в алканах составляет 0,154 нм, длина двойной связи в алкенах — 0,134 нм, то длина С—С связи в молекуле бензола равна 0,140 нм, т. е. является промежуточной между длиной одинарной и двойной связи.

Совокупность специфических свойств бензола — высокая стабиль­ность, инертность в реакциях присоединения, склонность к реакци­ям замещения, получила общее название «ароматичность», или «аро­матические свойства».

Что же требуется для того, чтобы мы имели право отнести соеди­нение к ароматическому ряду?

а) для проявления ароматического характера молекула должна прежде всего иметь плоское строение;

б) молекула должна иметь замкнутую сопряженную систему;

в) количество π-электронов должно соответствовать формуле 4n + 2, где п = 0, 1, 2, 3 и т. д. (данная закономерность была сформули­рована в 1931 г. немецким ученым Э. Хюккелем).

Номенклатура и изомерия

По заместительной номенклатуре ИЮПАК одноядерные арены рассматривают как производные бензола.

При наличии в кольце двух и более заместителей их положение указывают цифрами. Нумерацию атомов углерода бензольного коль­ца осуществляют таким образом, чтобы заместители имели возможно меньшие номера.

В дизамещенных производных бензола наряду с цифровым обозна­чением положений заместителей применяют приставки: орто (о-) поло­жение - 1,2; мета (м-) положение - 1,3 и пара (п-) положение - 1,4.

Кроме названий по заместительной номенклатуре сохранились и тривиальные названия: толуол, ксилол, кумол и др.

Одновалентные радикалы аренов имеют общее название—арилы (Аг). Двухвалентные радикалы бензола называют фениленами (о-, м-, п-).

Изомерия гомологов бензола обусловлена разными структурами, числом и положением заместителей в бензольном кольце.

 

 

Для однозамещенных гомологов бензола характерна изомерия, связанная с разной структурой заместителя.

 

 

Дизамещенные производные бензола существуют в трех изомер­ных формах, в зависимости от взаимного расположения в бензольном кольце (изомеры положения).

Для тризамешенных бензолов с одинаковыми заместителями в бен­зольном кольце существуют также три изомера:

 

 

Способы получения аренов

1. Циклотримеризация аминов

Ацетилен пропускают над активированным углем при повышен­ной температуре. Реакция была открыта Зелинским.

 

2. Обработка ацетона конц. H2S04

 

 

3. Дегидрогенизация алициклических соединений

Эта реакция показывает взаимосвязь между ароматическими и али- ииклическими соединениями.

4. Реакция Вюрца — Фиттига

Эта реакция чаще всего используется для получения гомологов бензола.

5. Алкилирование ароматических углеводородов по Фриделю — Крафтсу.

Физические свойства

Бензол и его низшие гомологи представляют собой жидкости, об­ладающие специфическим запахом. Ароматические углеводороды не растворимы в воде и хорошо растворяются в органических раствори­телях. Многие из них сами являются хорошими растворителями для других органических веществ. Из-за высокого содержания углерода горят коптящим пламенем.

Химические свойства

Реакционная способность бензола и его гомологов определяется главным образом наличием в структуре замкнутой π-электронной си­стемы, которая является областью повышенной электронной плотно­сти. Ароматические углеводороды, как и алкены, обладают нуклео­фильным характером. Однако, в отличие от ненасыщенных соедине­ний, при взаимодействии с электрофильными реагентами арены бо­лее склонны к реакциям замещения, а не присоединения, поскольку при этом сохраняется их ароматический характер. Эти реакции носят название реакций электрофильного замещения SE.


Реакции присоединения для аренов менее характерны, так как они приводят к нарушению ароматичности, с трудом вступают аромати­ческие углеводороды и в реакции оксиления.

1. Реакции электрофильного замещения (SE)

При атаке электрофильной частицей π-электронной системы бен­зольного кольца в результате электростатического взаимодействия образуется неустойчивый π-комплекс:

Далее электрофил «вырывает» пару электронов из ароматическо­го секстета бензольного ядра и между ним и одним из атомов углерода образуется σ-связь. Таким образом нарушается ароматичность бен­зольного ядра, образуется карбкатион — σ-комплекс.

Делокализаиию положительного заряда в σ-комплексе можно представить с помощью резонансных структур (I—111):

 

Образование σ-комплекса является наиболее высокоэнергетичной стадией реакции, определяющей ее скорость. σ-Комплекс не устойчив, он отщепляет протон от атома углерода, связанного с электрофилом, благодаря чему восстанавливается ароматичность бензольного кольца.

К наиболее важным реакциям SE относятся реакции нитрования, сульфирования, галогенирования, алкилирования и ацилирования.

1. Нитрование. В качестве нитрующих агентов чаше используют концентрированную азотную кислоту или смесь концентрированной азотной и серной кислот (нитрующая смесь):

Атакующей электрофильной частицей в реакции является ион нит- рония N02+, который образуется в результате кислотно-основного вза­имодействия между азотной и серной кислотами, где азотная кислота играет роль основания:

 

Ион нитрония атакует π-электронную систему бензольного ядра. В результате реакции образуется нитробезол.

2. Сульфирование — это процесс замещения атома водорода в бен­зольном ядре на сульфогруппу — S03H. Для сульфирования бензола и его гомологов применяют концентрированную серную кислоту или олеум (раствор триоксида серы S03 в серной кислоте):

Особенности механизма сульфирования аренов изучены недоста­точно. Однако экспериментальные данные свидетельствую о том. что атакующей электрофильной частицей служит триоксид серы SO3

3. Галогенирование. Бензол и его гомологи хлорируются, бромиру- ются и йодируются. Замещение атома водорода в бензольном ядре на атом хлора или брома осуществляют в присутствии катализаторов — кислот Льюиса (AlCl3, FeBr3, ZnCl2 и др.):

Под действием катализатора молекула галогена поляризуется. Ата­кующей электрофильной частицей служит либо комплекс поляризо­ванной молекулы галогена с кислотой Льюиса, либо катион галогена, образующийся в процессе ионизации данного комплекса:

4. Алкилирование по Фриделю — Крафтсу. Для введения алкильной группы в молекулу ароматического соединения в качестве электро- фильных реагентов чаше всего используют галогеналканы. Взаимо­действие происходит в присутствии катализаторов — кислот Льюиса:

Атакующей электрофильной частицей является карбкатион, который образуется при взаимодействии алкилирующего агента и катализатора:

Для алкилирования аренов также могут быть использованы спир­ты (реакции протекают в присутствии кислот Льюиса или минераль­ных кислот — H3P04, H2S04) или алкены (в этом случае алкилирование требует присутствия кислот Льюиса и минеральной кислоты как источника протонов).

По своему механизму реакция алкилирования аналогична реак­циям нитрования, сульфирования и галогенирования.

5. Ацилирование по Фриделю — Крафтсу. Ацилированием называ­ют процесс введения в молекулу органического соединения ацильной

группы .

Ацилирование бензола и его гомологов обычно осуществляют га- логенангидридами карбоновых кислот в присутствии кислот Льюиса:

Электрофилом, атакующим бензольное кольцо, является либо ацилиевый ион , либо комплекс ацилгалогенида с катализа­тором

Для введения ацильной группы могут быть использованы и ангид­риды карбоновых кислот.

II.Реакции присоединения

Реакции присоединения не характерны для аренов, они протека­ют в жестких условиях.

/. Гидрирование. При повышенных температуре и давлении, в при­сутствии катализаторов (мелкопористый никель — никель Ренея) бен­зол и его гомологи присоединяют три молекулы водорода:

Остановить реакцию на стадии образования продуктов частично­го гидрирования невозможно, поскольку они гидрируются значитель­но легче, чем сам бензол.

2. Хлорирование. При интенсивном солнечном освещении или под действием ультрафиолетового излучения бензол присоединяет хлор. Реакция протекает по радикальному механизму с образованием гек- сахлорциклогексана:

III.Реакции окисления

1. Окисление бензольного цикла. Бензольное кольцо устойчиво к дей­ствию окислителей. В обычных условиях ни перманганат калия, ни азот­ная кислота, ни оксид хрома (VI), ни другие сильные окислители не окисляют бензол. В жестких же условиях, например, при действии кис­лорода воздуха в присутствии оксида ванадия (V205), при температуре 400-500 °С бензольное ядро окисляется, образуя малеиновый ангидрид:

2. Окисление гомологов бензола. Алкилбензолы, в отличие от незаме­щенного бензола, окисляются значительно легче. В этом случае при дей­ствии сильных окислителей (КМп04, К2Сг207 и др.) подвергаются окис­лению боковые цепи:


Продуктами реакции являются ароматические карбоновые кис­лоты. Каждый алкильный радикал в бензольном кольце, независимо от длины углеродной цепи, окисляется до карбоксильной группы.

3. Озонирование. Подобно алкенам, бензол и его гомологи реаги­руют с озоном, образуя продукты присоединения, — триозониды:

Триозониды взрывоопасны. Это маслянистые жидкости, они не­стойкие и под действием влаги разрушаются с образованием дикарбонильных соединений и продуктов их дальнейшего окисления — дикарбоновых кислот.

Правила ориентации в бензольном ядре

В молекуле незамещенного бензола электронная плотность рас­пределена равномерно, поэтому электрофильный реагент может ата­ковать в равной степени любой из шести атомов углерода.

Если же в бензольном кольце содержится какой-либо заместитель, то под его влиянием происходит перераспределение π-электронной плотности и новый заместитель вступает в определенные положения по отношению к имеющемуся.

По влиянию на направление реакций электрофильного замеще­ния и реакционную способность бензольного кольца заместители мож­но разделить на две группы — заместители I рода (орто-, пара-ориентанты) и заместители II рода (мета-ориентанты).

Заместители I рода — атомы и атомные группы, проявляющие по­ложительный индуктивный (+/) или положительный мезомерный (+М)эффекты (доноры электронов):

Заместители 1 рода (за исключением галогенов) увеличивают элек­тронную плотность в бензольном кольце, тем самым активируют его в реакциях SЕ и направляют следующие заместители в орто- и пара- положения.

Заместители II рода — группы, проявляющие отрицательный ин­дуктивный (-1) или отрицательный мезомерный (-М) эффекты (элек- троноакцепторы):

Заместители II рода уменьшают электронную плотность в бен­зольном ядре и снижают скорость реакций SE по сравнению с незаме­щенным бензолом. Вновь входящий заместитель направляется преиму­щественно в мета-положение.

При введении третьего заместителя необходимо учитывать при­роду двух уже имеющихся в бензольном ядре.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.