МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Доходность и риск портфеля ценных бумаг





В теории портфельного инвестирования исходят из того, что значе­ния доходности отдельной ценной бумаги портфеля являются случайными величинами, распределенными по нормальному (Гауссовскому) закону.

Чтобы определить распределение вероятностей случайной величи­ны необходимо знать, какие фактические значения принимает данная величина, и какова вероятность каждого подобного результата. При этом инвестора интересует доходность инвестиций в конце инвестиционного, холдингового периода, то есть будущиезначения , которые в начальный момент инвестирования неизвестны. Значит, инвестор должен оперировать ожидаемым, будущимраспределением случайной величины . Существу­ют два подхода к построению распределения вероятностей - субъективный и объективный, или исторический. При использовании субъективного под­хода инвестор, прежде всего, должен определить возможные сценарии раз­вития экономической ситуации в течение холдингового периода, оценить вероятность каждого результата и ожидаемую при этом доходность ценной бумаги.

Субъективный подход имеет важное преимущество, поскольку по­зволяет оценивать сразу будущиезначение доходности. Однако, он не на­ходит широкого применения, поскольку для обычного инвестора очень трудно сделать оценку вероятностей экономических сценариев и ожидае­мую при этом доходность.

Чаще используется объективный,или историческийподход. В его основе лежит предположение о том, что распределение вероятностей бу­дущих (ожидаемых) величин практически совпадает с распределением ве­роятностей уже наблюдавшихсяфактических, исторических величин. Значит, чтобы получить представление о распределении случайной вели­чины в будущем достаточно построить распределение этих величин за какой-то промежуток времени в прошлом.

Как показывают исследования западных экономистов, для рынка акций наиболее приемлемым является промежуток 7-10 шагов расчета. В отличие от субъективного подхода, который предполагает разную вероят­ность различных значений доходности, при объективном подходе каждый результат имеет одинаковую вероятность, поскольку при наблюдениях случайной величины вероятность конкретного результата составляет вели­чину . Например, если исследуется доходность акции за предшествую­щие 10 лет, то вероятность каждой годовой доходности составляет 1/10.

Наиболее часто в теории инвестиционного портфеля используется среднее арифметическоезначение случайных величин. Напомним, что если ,(t = 1,2,….,N) представляют собой значения доходности в конце t –го периода, а - вероятности данных значений доходности, то:

(42)

где – среднее арифметическое значение доходности;

N – количество лет, в течение которых велись наблюдения.

В случае объективного подхода =1/ N, поэтому формула примет вид:

= (43)

Наиболее часто риск ценной бумаги измеряют с помощью дисперсии и стандартного отклонения .

(44)

Доходность портфеля.Подожидаемой доходностьюпортфеля понимается средневзвешенное значение ожидаемых значений доходности ценных бумаг, входящих в портфель. При этом "вес" каждой ценной бума­ги определяется относительным количеством денег, направленных инве­стором на покупку этой ценной бумаги. Ожидаемая доходность инвестиционного портфеля равна:



(45)

где – ожидаемая норма отдачи портфеля;

– доля в общих инвестиционных расходах, идущая на приобретение i-той ценной бумаги (“вес” i-той ценной бумаги в портфеле);

– ожидаемая доходность i-той ценной бумаги;

n – число ценных бумаг в портфеле.

Измерение риска портфеля.При определении риска портфеля сле­дует учитывать, что дисперсию портфеля нельзянайти как средневзве­шенную величин дисперсий входящих в портфель ценных бумаг. Это объясняется тем, что дисперсия портфеля зависит не только от дисперсий входящих в портфель ценных бумаг, но также и от взаимосвязи доходностей ценных бумаг портфеля друг с другом. Иными словами, риск портфе­ля объясняется не только индивидуальным риском каждой отдельно взятой ценной бумаги портфеля, но и тем, что существует риск воздействия изме­нений наблюдаемых ежегодных величин доходности одной акции на изме­нения доходности других акций, включаемых в инвестиционный портфель.

Меру взаимозависимости двух случайных величин измеряют с по­мощью ковариации и коэффициента корреляции. Положительная ковариацияозначает, что в движении доходности двух ценных бумаг имеется тенденция изменяться в одних и тех же направлениях: если доход­ность одной акции возрастает (уменьшается), то и доходность другой ак­ции также возрастет (уменьшится). Если же просматривается обратная тенденция, то есть увеличению (уменьшению) доходности акций одной компании соответствует снижение (увеличение) доходности акций другой компании, то считается, что между доходностями акций этих двух компа­ний существует отрицательная ковариация.

Когда рассматриваются величины доходности ценных бумаг за прошедшие периоды, то ковариация подсчитывается по формуле:

(46)

где – ковариация между величинами доходности ценной бумаги i и ценной бумаги j;

и – доходность ценных бумаг i и j в момент времени t ;

и – ожидаемая (среднеарифметическая) доходность ценных бумаг i и j;

N – общее количество лет наблюдения.

Часто при определении степени взаимосвязи двух случайных вели­чин используют относительнуювеличину – коэффициент корреляции :

(47)

Итак, риск инвестиционного портфеля надо определять с помощью дисперсии. Пусть в исследуемый портфель входят n ценных бумаг; тогда дисперсию портфеля необходимо вычислять по формуле:

(48)

Учитывая, что коэффициент корреляции , то эту формулу можно представить в виде:

(49)

2 тема Основные положения модели Г. Марковица

 

Знание ожидаемой доходности активов, а также уровня риска ее получения используется при формировании инвесторами так называемых оптимальных портфелей ценных бумаг. Оптимизация портфелей ценных бумаг состоит в определении пропорций в составе входящих в него активов, которые бы обеспечили максимальную доходность при минимуме риска.

Решение проблемы оптимального распределения долей капитала между ценными бумагами, сводящего общий риск к минимальному уров­ню, и составление оптимального портфеля было предложено в 50-е годы XX века американским ученым Г. Марковицем. Формализованная модель Г. Марковица, а также разработанная в начале 60-х годов модель В Шарпа, позволяет добиваться формирования такого инвестиционного портфеля, который бы отвечал потребностям и целям каждого индивидуального ин­вестора. Как любая формализованная модель, указанные модели имеют ряд допущений и могут быть реализованы только при определенных усло­виях (на отечественном фондовом рынке не все есть условия).

В 1952 г. американский экономист Г. Марковиц опубликовал статью "Рогtfolio Selection", которая легла в основу теории инвестиционного портфеля. Г. Марковиц исходил из предположения о том, что инвестиро­вание рассматривается как однопериодовый процесс, т.е. полученный в ре­зультате инвестирования доход не реинвестируется. Другим важным ис­ходным положением в теории Г. Марковица является идея об эффективно­сти рынка ценных бумаг. Под эффективнымрынком понимается такой рынок, на котором вся имеющаяся информация трансформируется в изме­нение котировок ценных бумаг; это рынок, который практически мгновен­но реагирует на появление новой информации.

В своих теоретических исследованиях Марковиц полагал, что зна­чения доходности ценных бумаг являются случайными величинами, рас­пределенными по нормальному (Гауссовскому) закону. В этой связи Мар­ковиц считал, что инвестор формируя свой портфель, оценивает лишь два показателя – ожидаемую доходность и – стандартное отклонение как меру риска (только эти два показателя определяют плотность вероятности случайных чисел при нормальном распределении). Следовательно, инве­стор должен оценить доходность и стандартное отклонение каждого порт­феля и выбрать наилучший портфель, который больше всего удовлетворяет его желания – обеспечивает максимальную доходность при допустимом значении риска . Какой при этом конкретныйпортфель предпочтет ин­вестор, зависит от его оценки соотношения "доходность-риск".

Ключ к решению проблемы выбора оптимального портфеля лежит в теореме о существовании эффективного набора портфелей,так называе­мой границы эффективности.Суть теоремы сводится к выводу о том, что любой инвестор должен выбрать из всего бесконечного набора портфелей такой портфель, который:

1. Обеспечивает максимальную ожидаемую доходность при каждом уровне риска.

2. Обеспечивает минимальный риск для каждой величины, ожидаемой доходности.

Набор портфелей, которые минимизируют уровень риска при каж­дой величине ожидаемой доходности, образуют так называемую границу эффективности. Эффективный портфель – это портфель, который обес­печивает минимальный риск при заданной величине и максимальную отдачу при заданном уровне риска.

Та часть риска портфеля, которая может быть устранена путем ди­версификации, называется диверсифицируемым,или несистематиче­скимриском. Доля же риска, которая не устранятся диверсификацией, но­сит название недиверсифицируемого,или систематическогориска.

Если портфель состоит из более чем из 2 ценных бумаг, то для любого за­данного уровня доходности существует бесконечное число портфелей, или, иными словами, можно сформулировать бесконечное количество портфе­лей, имеющих одну и ту же доходность.

Тогда задача инвестора сводится к следующему: из всего бесконеч­ного набора портфелей с ожидаемой доходностью необходимо найти такой, который обеспечивал бы минимальный уровень риска. Иными сло­вами, можно задачу инвестора свести к следующему:

необходимо найти минимальное значение дисперсии портфеля

(50)

при заданных начальных условиях:

(52)

(53)

Для решения задачи нахождения оптимального портфеля, содержа­щего n ценных бумаг, необходимо первоначально вычислить:

1. n значений ожидаемой доходности , где i=1,2,….,n.

2. n значений дисперсий каждой ценной бумаги;

3. n(n-1)/2 значений ковариации , где i,j=1,2,….,n

Если подставить значения , и в выражения (50–53), то вы­ясняется, что в этих уравнениях неизвестными оказываются только вели­чины - "веса" каждой ценной бумаги в портфеле. Следовательно, задача формирования оптимального портфеля из n ценных бумаг по сути дела сводится к следующему: для выбранной величины доходности инвестор должен найти такие значения , при которых риск инвестиционного портфеля становится минимальным. Иначе говоря, для выбранного значе­ния инвестор должен определить, какие суммы инвестиционных затрат необходимо направить на приобретение той или иной ценной бумаги, что­бы риск инвестиционного портфеля оказался минимальным.

В теории Марковица инвесторы стремятся сформировать портфель ценных бумаг, чтобы максимизировать получаемую полезность. Иными словами, каждый инвестор желает таким образом сформировать портфель, чтобы сочетание ожидаемой доходности и уровня риска портфеля приносило бы ему максимальное удовлетворение потребностей и миними­зировало риск при желаемой доходности. Разные инвесторы имеют отлич­ные друг от друга мнения об оптимальности сочетания и , поскольку отношение одного инвестора к риску не похоже на желание рисковать дру­гого инвестора. Поэтому, говоря об оптимальномпортфеле, надо иметь в виду, что эта категория сугубо индивидуальна,и оптимальные портфели разных инвесторов теоретически отличаются друг от друга. Тем не менее, каждый оптимальныйпортфель непременно является эффективным,то есть инвесторы выбирают удовлетворяющий их (оптимальный) портфель из эффективных портфелей.

На практике конкретный инвестор, построив границу эффективных портфелей, должен задать себе вопрос – какую доходность он ожидает от портфеля? После этого по кривой границы эффективных он определяет уровень такого портфеля. Затем инвестор должен оценить, удовлетворяет ли его такой уровень риска. Если инвестор готов к более высокому уровню риска, то ему целесообразно выбрать портфель с более высокой . Тот портфель, который при установленной инвестором доходности даст наилучшее сочетание и , будет оптимальным, для данного инвестора.

 

 

6 тема Оптимизация инвестиционного портфеля по методу У. Шарпа

 

В 1963 г. американский экономист У. Шарп (William Sharpe) пред­ложил новый метод построения границы эффективных портфелей, позво­ляющий существенно сократить объемы необходимых вычислений. В дальнейшем этот метод модифицировался и в настоящее время известен как одноиндексная модель Шарпа (Sharpe single-index model).

В основе модели Шарпа лежит метод линейного регрессионного анализа, позволяющий связать две переменные величины - независимую X и зависимую Y линейным выражением типа модели Шарпа независимой считается величина какого-то рыночного индекса. Таковыми могут быть, например, темпы роста валового внутреннего продукта, уро­вень инфляции, индекс цен потребительских товаров и т.п. Сам Шарп в ка­честве независимой переменной рассматривал норму отдачи , вычислен­ную на основе индекса Standart and Poors (S&P500). В качестве зависимой переменной берется отдача какой-то i-ой ценной бумаги. Поскольку за­частую индекс S&Р500 рассматривается как индекс, характеризующий ры­нок ценных бумаг в целом, то обычно модель Шарпа называют рыночной моделью (Market Model),а норму отдачи - рыночнойнормой отдачи.

Пусть норма отдачи принимает случайные значения и в течение N шагов расчета наблюдались величины , ,…, . При этом доход­ность какой-то i-ой ценной бумаги имела значения , ,…, . В таком случае линейная регрессионная модель позволяет представить взаимосвязь между величинами и в любой наблюдаемый момент времени в виде:

(54)

где: – доходность i-ой ценной бумаги в момент времени t;

– параметр, постоянная составляющая линейной регрессии, пока­зывающая, какая часть доходности i-ой ценной бумаги не связана с изме­нениями доходности рынка ценных бумаг ;

– параметр линейной регрессии, называемый бета, показывающий чувствительность доходности i-ой ценной бумаги к изменениям рыночной доходности;

– доходность рыночного портфеля в момент t;

случайная ошибка, свидетельствующая о том, что реальные, действующие значения и порою отклоняются от линейной зависимо­сти.

Особое значение необходимо уделить параметру , поскольку он определяет чувствительность доходности i-ой ценной бумаги к изменениям рыночной доходности.

В общем случае, если >1 , то доходность данной ценной бумаги более чувствительная, подвержена большим колебаниям, чем рыночная доходность . Соответственно, при < 1 ценная бумага имеет меньший размах отклонений доходности , от средней арифметической (ожидаемой) величины , чем рыночная норма отдачи. В этой связи ценные бумаги с коэффициентом > 1 классифицируются как более рискованные, чем ры­нок в целом, а с < 1 - менее рискованными.

Как показывают исследования, для большинства ценных бумаг > 0, хотя могут встретиться ценные бумаги и с отрицательной величиной .

Ожидаемая доходность портфеля, состоящего из n ценных бумаг, вычисляется по формуле:

(55)

где – вес каждой ценной бумаги в портфеле. Подставим в эту формулу выражение для из формулы (54):

(56)

Для придания этой формуле компактности, Шарп предложил считать ры­ночный индекс как характеристику условной (n+1)-ой ценной бумаги в портфеле. В таком случае, второе слагаемое уравнения (56) можно пред­ставить в виде:

(57)

где: ; (57а)

.

при этом считается, что дисперсия (n+1)-ой ошибки равна дисперсии рыночной доходности: . Выражение (15а) представляет собойсумму взвешенных величин "беты" ( ) каждой ценной бумаги (где весом служат и называется портфельной бетой( ). С учетом выражений (56) и (57) формулу (55) можно записать так:

(58)

а поскольку , то окончательно имеем:

(59)

Итак, ожидаемую доходность портфеля можно представить состоящей из двух частей:

а) суммы взвешенных параметров каждой ценной бумаги – …..+ , что отражает вклад в самих ценных бумаг,и

б) компоненты , то есть произведенияпортфельной бетыи ожидаемой рыночной доходности, что отражает взаимосвязь рынкас ценными бумагами портфеля.

Дисперсия портфеля в модели Шарпа представляется в виде:

(60)

При этом необходимо иметь в виду, что , то есть , а . Значит, дисперсию портфеля, содержащего n ценных бумаг, можно представить состоящей из двух компонент:

а) средневзвешенных дисперсий ошибок , где весами служат , что отражает долю риска портфеля, связанного с риском самих ценных бумаг (собственный риск);

б) - взвешенной величины дисперсии рыночного показателя , где весом служит квадрат портфельной беты,что отражает долюриска портфеля, определяемого нестабильностью самого рынка (рыночныйриск)

В модели Шарпа цель инвестора сводится к следующему:

необходимо найти минимальное значение дисперсии портфеля

(61)

при следующих начальных условиях:

(62)

(63)

(64)

Таким образом для построения границы эффективных портфелей в модели Шарпа необходимо выполнить следующие основные этапы:

1. Выбрать n ценных бумаг, из которых формируется портфель, и определить
исторический промежуток в N шагов расчета, за который будут наблюдаться значения доходности каждой ценной бумаги.

2. По рыночному индексу (например, АК&М) вычислить рыночные доходности для того же промежутка времени.

3. Определить величину дисперсии рыночного показателя , а также значения ковариаций доходностей каждой ценной бумаги с рыночной
нормой отдачи и найти величины :

4. Найти ожидаемые доходности каждой ценной бумаги и рыночной
доходности и вычислить параметр :

5. Вычислить дисперсии ошибок регрессионной модели

6. Подставить эти значения в соответствующие уравнения

После такой подстановки выяснится, что неизвестными величинами являются веса ценных бумаг. Выбрав определенную величину ожидае­мой доходности портфеля , можно найти веса ценных бумаг в портфеле, построить границу эффективных портфелей и определить оптимальный портфель.

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.