МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Похідні тригонометричних функцій





Похідні степеневих, показникових , логарифмічних і тригонометричних функцій.

План.

 

1. Похідні степеневих функцій

2. Похідні показникових функцій

3. Похідні логарифмічних функцій

4. Похідні тригонометричних функцій

 

 

Рекомендована література.

 

Алгебра і початки аналізу: Підруч.для 10-11 кл.загальноосвіт.навч. закладів / М.І. Шкіль, З.І. Слєпкань, О.С.Дубинчук – К.: Зодіак-ЕКО, 2000.-608с.

Розділ 10.§ 1,2,5.

 

 

Дайте письмові відповіді на запитання.

Запишіть формули:

1. Похідні степеневих функцій

2. Похідні показникових функцій

3. Похідні логарифмічних функцій

4. Похідні тригонометричних функцій

 

 

Похідна степеневої функції , де

Нам уже відомо, що . А як знайти похідну функції у = х5, у = х20 тощо? Розглянемо функцію у= хn, де n – .

Знайдемо похідну цієї функції, для цього зафіксуємо значення аргумента х0 і надамо йому приросту , тоді:

 

1)

2)

(Скориставшись формулою

3)

Звідси

 

Розглянемо функцію у = хn-1, де .

Знайдемо похідну цієї функції, для цього зафіксуємо значення аргумента х0 і надамо йому приросту , тоді

 

1)

2)

3) =

 

Отже, , де .

Таким чином виконується рівність: .

 

Ми довели, що для .

Розглянемо функцію , де .

Знайдемо похідну цієї функції:

 

.

 

Отже, для всіх .

 

 

Похідна показникової функції

Перш ніж знаходити похідну показниковїх функції, зробимо два важливих зауваження. Графік функції у=ах проходить через точку (0; 1). Нехай – величина кута , утвореного дотичною до графіка функції у = ах в точці (0; 1)з додатним напрямом осі абсцис. Величина цього кута залежить від значення основи а. Наприклад, обчислено, що при а = 2 величина кута приблизно дорівнює 340(рис.29), а при а = 2, =470.

у у = ех якщо основа а показникової функції у = ах зростає від 2 до 3, то величина кута зростає і приймає значення від 340 до 470. Отже, існує таке значення , при якому дотична, проведена до графіка функції у = ах в точці (0; 1) утворює з додатним напрямком осі ОХ кут 450 (рис.31). Таке значення прийнято позначати буквою е, е – число ірраціональне, е = 2,718281828459... 0

Таким чином, дотична до графіка функції у = ех в точці (0; 1) утворює з додатним напрямком осі абсцис, який дорівнює 450.

У відповідності з геометричним змістом похідної даний висновок означає, що значення похідної функції в точці х0 дорівнює =1. Отже, .

Знайдемо тепер формулу похідної функції .

Нехай аргумент х0 одержав приріст , тоді:

 

1)

2)

3) .

 

Таким чином, похідна функції ех дорівнює самій функції:

Знайдемо похідну функції , скориставшись основною логарифмічною тотожністю та правилом знаходження похідної складеної функції:

 

.

 

Отже,

Похідна показникової функції дорівнює добутку цієї функції на натуральний логарифм її основи.

Приклад 1. Знайдіть похідну функцій:

а) у = 5х; б) у = е3-2х; в) ; г) .

Розв’язання

а) ;

б) ;

в) ;

г) .

 

Похідна логарифмічної функції

Розглянемо функцію . За основною логарифмічною тотожністю: для всіх додатних х.

Диференціюючи обидві частини цієї рівності, одержимо: , або .

Звідси .

Отже,

Знайдемо похідну функції . Так як , то

 

.

 

Отже,

Приклад 1. Знайдіть похідну функцій:

а) ; б) ;

в) ; г) .



а) ;

б) ;

в) ;

г)

= .

 

Похідні тригонометричних функцій

Знайдемо похідну функції у= . Зафіксуємо х0 і надамо аргументу приросту , тоді:

 

1)

2)

3)

.

 

Отже

Аналогічно можна довести, що

Знайдемо похідну функції .

Зафіксуємо х0 і надамо аргументу приросту , тоді:

 

.

.

 

Отже,

Аналогічно можна довести, що

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.