МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Квантові генератори - лазери.





Реферат

 

із фізики на тему:

 

 

« Фотофізична дія світла »

Виконали :

Учні 11а класу

Харківської загальноосвітньої

Школи І - ІІІ ступенів № 94

Покровська Каріна,

Цивінська Марія,

Чорноблавська Лілія,

Стороженко Марина,

Сидоренко Дар’я,

Чан Ван Куанг,

Фам Хонг Куан

План :

1)Фотохромізм.

2)Люмінесценція.

А) загальні відомості;

Б) природа явища;

В) класифікація видів;

Г) спектроскопія;

Д) використання .

3)Квантові генератори - лазери.

4)Тиск світла.

5)Висновок.

6)Використані джерела.

Фотохромізм.

Фотохромізм- це здатність речовини зворотно (тобто з подальшим поверненням у вихідне положення) переходити з одного стану в який-небудь інший стан під дією оптичного випромінювання.

Під час цього явища в речовині з'являється, або різко змінюється спектр поглинання видимого випромінювання.

Це пояснюють тим, що, поглинувши квант світла, речовина переходить у новий стан, який характеризується іншим спектром поглинання або перебудовою валентних зв'язків у процесі фотодисоціації чи фотохімічної реакції.

Багато речовин здійснюють вказані переходи під дією, наприклад, рентгенівського випромінювання. Проте фотохромними речовини називаються лише тоді, коли такі переходи у них виникають і під дією оптичного випромінювання (ультрафіолетового, видимого або інфрачервоного).

Ґрунтуючись на квантовій гіпотезі світла, А. Ейнштейн сформулював два фотохімічні закони:

1) поглинутий речовиною фотон може викликати перетворення лише однієї молекули;

2) фотохімічна реакція відбувається за умови, що енергія фотона достатня для розриву молекулярних зв'язків, тобто не менша за енергію дисоціації.

Фотохромізм властивий дуже великій кількості речовин органічного та неорганічного походження. В основі фотохромізму органічних речовин лежить ряд фотофізичних процесів і численні фотохімічні реакції. Якщо основою фотохромізму служать фотохімічні реакції, то вони супроводжуються або перебудовою валентних зв'язків (наприклад, при дисоціації, димеризації, перегрупування атомів у молекулі, окисно-відновних реакціях, а також при таутомерних перетвореннях, або зміною конфігурації атомів в молекулах.

Фотохромізм неорганічних речовин обумовлений оборотними процесами фотопереносу електронів, що призводить до виникнення центрів забарвлення різного типу, зміни валентності іонів металів, а також оборотними реакціями фотодисоціації з'єднань тощо.

На основі органічних і неорганічних фотохромних речовин розроблені фотохромні матеріали. Застосування цих матеріалів в науці і техніці засноване на їх світлочутливості, оборотності фотофізичних і фотохімічних процесів,що відбуваються в них, на появі або зміні забарвлення (спектрів поглинання) безпосередньо під дією світла, на розходженні термічних, хімічних та фізичних властивостей вихідного і фотоіндукованого станів фотохромних речовин.


 

Люмінесценція

Люмінесценція — відмінне від теплового світіння збудженої речовини. Інша назва холодне світло.

А) Речовина, у якій спостерігається люмінесценція, називається люмінофором. Люмінесцентне випромінювання виникає за рахунок квантових переходів атомів, іонів, молекул зі збудженого стану в основний чи менш збуджений, тому кожен атом, іон чи молекула люмінофора є центром люмінесценції.



Люмінесценція при збудженні речовини світлом називається фотолюмінесценцією. При збудженні речовини струмом виникає електролюмінесценція, яка використовується в люмінесцентних лампах та світлодіодах. У електроннопроменевих трубках, які ще донедавна використовувалися у телевізорах та дисплеях, люмінесценція збуджується потоком електронів. У ядерній фізиці використовуються сцинтиляційні детектори, в яких люмінесценція викликається швидкими зарядженими частинками. Світіння, яке виникає внаслідок хімічних реакцій, називають хемолюмінесценцією, а світіння в живих організмах — біолюмінесценцією. Люмінесценція може продовжуватися ще дуже довго після збудження речовини. Таку люмінесценцію (з характерним часом с) випромінювання на зміненій частоті називають фосфоресценцією. Швидке негайне (з характерним часом с) називають флюоресценцією. Точні кількісні критерії розмежування цих двох явищ визначити важко, проте знання механізму конкретного люмінесцентного процесу дозволяє чітко їх розрізнити - при фосфоресценції відбувається зміна мультиплетності молекули, при флюоресценції спін, а відтак і мультплетність не змінюються.

Проте такий прозорий критерій розрізнення є загально прийнятим лише серед фахівців з молекулярної спектроскопії; науковці, що займаються іншими системами, зокрема атомною спектроскопією, не завжди його притримуються: так, одна з найважливіших для фотохімії лінія випромінювання ртуті 253,7 нм відповідає переходу 3P11S0 і за цим критерієм є фосфоресцентною лінією, проте фахівці з атомної спектроскопії так її не називають.

Б) При збудженні речовини тим чи іншим способом, її молекули (у випадку газу чи рідини) переходять у високоенергетичні квантові стани. У випадку напівпровідників електрони переходять із валентної зони у вільні стани зони провідності, залишаючи у валентній зоні дірку. Збуджений стан може випроменити фотон негайно, повернувшись у основний стан або ж втратити частину енергії в результаті зіткнень.

Процеси поступової втрати енергії збудженою частинкою називаються релаксацією. Релаксація продовжується, доки збуджена частка не прийде до стану, коли подальша поступова втрата енергії неможлива. Такі стани характерні для кожної речовини й визначають спектр люмінесценції. Збудження може існувати в такому стані лише певний час, а потім відбувається перехід до основного стану, який супроводжується випромінюваннями кванта світла — фотону. Кожен люмінофор характеризується своїм спектром люмінесценції, на який майже не впливає спосіб збудження.

В) Довготривалу люмінесценцію називають фосфоресценцією, а короткотривалу – флуоресценцією.

За механізмом розрізняють такі різновиди люмінесценції: резонансну, спонтанну, вимушену та рекомбінаційну.

За типом збудження розрізняють фотолюмінесценцію, рентгенолюмінесценцію, катодолюмінісценцію, хемілюмінесценцію, кріолюмінесценцію, електролюмінесценцію, триболюмінесценцію, радіолюмінесценцію термолюмінесценцію тощо.

Г) Вивчення люмінесценції — один із головних методів оптичної спектроскопії. Вивчають звичайно спектр випромінювання, спектр збудження й кінетику згасання люмінесценції. Існує також метод термостимульваної люмінесценції, коли речовину опромінюють при низькій температурі, за якої процеси релаксації збуджень затримані, а потім її повільно підігрівають і вона починає світитися при певній температурі.

Д) Люмінесценцію широко використовують в електропроменевих приладах, світлотехніці, дефектоскопії та люмінесцентному аналізі, при люмінесцентній сепарації корисних копалин. Люмінесценція мінералів є їх важливою діагностичною ознакою.

 


 

Квантові генератори - лазери.

Атом не може тривалий час перебувати у збудженому стані — через деякий час (порядку 10-8с) він переходить в умовно стабільний або стабільний стан. Такий самочинний його перехід з одного енергетичного стану в інший супроводжується, як правило, спонтанним випромінюванням кванта світла певної частоти. Оскільки це відбувається з кожним атомом довільно, то за звичайних умов спостерігається спонтанне випромінювання світла атомами, яке в сукупності є різночастотним, немонохроматичним і некогерентним за своєю природою.

У 1917 р. А. Ейнштейн припустив, що за певних умов випромінювання може бути вимушеним. Зокрема, якщо електрон в атомі переходить з одного енергетичного рівня на інший під дією зовнішнього електромагнітного поля, частота якого збігається з власною частотою квантового переходу електрона то випромінювання буде індукованим.

Індуковане електромагнітне випромінювання є монохроматичним і когерентним.

Особливістю такого випромінювання є те, що воно поширюється в тому самому напрямку, що й падаюче світло, є монохроматичним і когерентним з ним, тобто не відрізняється від поглинутої атомом електромагнітної хвилі ні за частотою, ні за фазою, ні за поляризацією. Інакше кажучи, внаслідок проходження електромагнітної хвилі крізь речовину може відбуватися когерентне підсилення світла за рахунок індукованого випромінювання.

Таке підсилення можливе лише тоді, коли більшість атомів речовини перебуває у збудженому метастабільному стані.

У такому стані атом може перебувати недовго, і тому через деякий час він повертається у стабільний стан, випромінюючи при цьому світло з частотою падаючого випромінювання: . Це явище, передбачене ще А.Ейнштейном, покладено в основу принципу дії квантових генераторів і підсилювачів.

У 1954 р. російські вчені М. Г. Басов і О. М. Прохоров та незалежно від них у 1955 р. американський фізик Ч. Таунс створили перший квантовий підсилювач електромагнітного випромінювання в діапазоні радіохвиль так званий мазер.

У 1960 р. американський фізик Т. Мейман створив на кристалі рубіна перший квантовий генератор оптичного діапазону, названий лазером.

Рубіновий лазер складається з кристала рубіна (оксид Алюмінію АІ2О3 з домішками Хрому), виготовленого у формі стрижня 1 з плоскопаралельними торцями 2 (мал. 7.12).

Один із торців роблять дзеркальним, а другий — напівпрозорим. Рубіновий стрижень охоплює спіральна газорозрядна лампа імпульсного режиму 3, у спектрі випромінювання якої є електромагнітна хвиля збуджувальної частоти.

Атом Хрому в кристалі рубіна, поглинаючи фотон з довжиною хвилі 560 нм, активізується і переходить з основного, стабільного стану Е1 у збуджений з енергією E3.

Взагалі, лазер — абревіатура слів англійського виразу «Light Amplification by Stimulated Emission of Radiation» (підсилення світла за допомогою вимушеного випромінювання).

Лазерне випромінювання характеризується певними властивостями, які вирізняють його серед інших джерел світла. Насамперед це вузькоспрямоване проміння з малим кутом розходження. Внаслідок цього можлива точна локалізація променя і його вибіркова дія на атоми, іони, молекули, яка викликає фотохімічні реакції, фотодисоціацію та інші фотоелектричні явища. Ця його властивість використовується в лазерній хімії, технологіях запису інформації на лазерних дисках, лікуванні зору тощо.

Виняткова монохроматичність і когерентність лазерного випромінювання дає змогу використовувати його в побудові стандартів частоти, спектроскопії, голографії, волоконній оптиці, в астрофізичних дослідженнях небесних тіл, тощо.

Висока сконцентрованість енергії лазерного променя дає змогу досягти значної інтенсивності випромінювання, надвисоких температур і тисків. Це використовують у зварюванні і плавленні металів, для одержання надчистих матеріалів, у лазерній хірургії, під час термоядерного синтезу тощо.

Залежно від активної речовини лазери бувають газові, рідинні, напівпровідникові та твердотілі.

 


 

Тиск світла.

Світловий тиск — тиск, який світло чинить на тіло, в якому поглинається, або від якого відбивається.
Теоретично існування світлового тиску передбачив Максвелл в 1871 році. Уперше тиск світла виміряв у 1899 р. російський фізик П. М. Лебедєв за допомогою підвішеної у вакуумі на тонкій кварцовій нитці легкої «крильчатки», одне крильце якої було відбиваючим (дзеркало), інше — поглинаючим (зачорненим). Тиск світла на відбиваюче крильце був удвічі більшим, ніж на поглинаюче

Світло складається з фотонів, кожен з яких має імпульс. За законом збереження імпульсу при поглинанні фотона цей імпульс передається тілу, що його поглинуло. При відбитті світла імпульс фотона міняється на протилежний, а тіло, від якого відбивається світловий промінь, отримує вдвічі більший імпульс.
При відбитті світла поверхнею тіла світловий тиск вдвічі більший. При проходженні фотона наскрізь світлового тиску не виникає.
Світловий тиск в реальних умовах слабкий: близько 4,5 мкПа (атмосферний тиск дорівнює 100 кПа). Його вимірювання утруднялося ще й тим, що молекули газів, які ще залишилися у відкачаній колбі, створювали на крильця тиск, набагато більший за тиск світла. Однак Лебедєву вдалося досить точно (як показали пізніше інші дослідники) виміряти тиск світла однак його можна використати в умовах космічного простору для побудови фотонних вітрил. Сонячне вітрило використовує для розгону космічного корабля у вакуумі тиск світла.
Тиск світла не завжди малий: у надрах зірок, де внаслідок термоядерних реакцій виділяється величезна енергія, тиск випромінювання дуже великий. 


 

Висновок.

Властивість речовин реагувати на опромінення світлом покладено в основу виготовлення фотохромних матеріалів, які застосовують для реєстрування зображень, запису й обробки оптичних сигналів. Останнім часом широкого поширення набули полімерні матеріали і фотохромні світлочутливі плівки, що містять галогеніди Аргентуму (AgBr, AgCl), лужних металів (КСl, NaF) тощо. Зокрема, їх використовують в елементах оперативної пам'яті ЕОМ, для кольорового друку і фотографії, запису інформації на оптичних дисках тощо.

Люмінесценцію широко використовують в електропроменевих приладах, світлотехніці, дефектоскопії та люмінесцентному аналізі, при люмінесцентній сепарації корисних копалин. Люмінесценція мінералів є їх важливою діагностичною ознакою.

Виняткова монохроматичність і когерентність лазерного випромінювання дає змогу використовувати його в побудові стандартів частоти, спектроскопії, голографії, волоконній оптиці, в астрофізичних дослідженнях небесних тіл, тощо.

Отже, фотофізична дія світла є невід’ємною частиною сучасного життя.


 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.