МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Шифрування і розшифрування





Історія криптографії

На фото показано сучасну реконструкцію шифра «скітала», що використовувався в Давній Греції, ймовірно був першим пристроєм для шифрування.

До нашого часу, криптографія займалася виключно забезпеченням конфіденційності повідомлень (тобто шифруванням) – перетворенням повідомлень із зрозумілої форми в незрозумілу і зворотнє відновлення на стороні одержувача, роблячи його неможливим для прочитання для того, хто перехопив або підслухав без секретного знання (а саме ключа, необхідного для дешифровки повідомлення). В останні десятиліття сфера застосування криптографії розширилася і включає не лише таємну передачу повідомлень, але і методи перевірки цілісності повідомлень, ідентифікування відправника/одержувача (аутентифікація), цифрові підписи, інтерактивні підтвердження, та технології безпечного спілкування, тощо.

Найперші форми тайнопису вимагали не більше ніж аналог олівця та паперу, оскільки в ті часи більшість людей не могли читати. Поширення писемності, або писемності серед ворогів, викликало потребу саме в криптографії. Основними типами класичних шифрів є перестановочні шифри, які змінюють порядок літер в повідомленні, та підстановочні шифри, які систематично замінюють літери або групи літер іншими літерами або групами літер. Прості варіанти обох типів пропонували слабкий захист від досвідчених супротивників. Одним із ранніх підстановочних шифрів був шифр Цезаря, в якому кожна літера в повідомленні замінювалась літерою через декілька позицій із абетки. Цей шифр отримав ім'я Юлія Цезаря, який його використовував, зі зсувом в 3 позиції, для спілкування з генералами під час військових кампаній, подібно до коду EXCESS-3 в булевій алгебрі.

Шляхом застосування шифрування намагаються зберегти зміст спілкування в таємниці, подібно до шпигунів, військових лідерів, та дипломатів. Зберіглися також відомості про деякі з ранніх єврейських шифрів. Застосування криптографії радиться в Камасутрі як спосіб спілкування закоханих без ризику незручного викриття. Стеганографія (тобто, приховування факту наявності повідомлення взагалі) також була розроблена в давні часи. Зокрема, Геродот приховав повідомлення – татуювання на поголеній голові раба – під новим волоссям. До сучасних прикладів стеганографії належать невидимі чорнила, мікрокрапки, цифрові водяні знаки, що застосовуються для приховування інформації.

Шифротексти, отримані від класичних шифрів (та деяких сучасних), завжди видають деяку статистичну інформацію про текст повідомлення, що може бути використано для зламу. Після відкриття частотного аналізу (можливо, арабським вченим аль-Кінді) в 9-тому столітті, майже всі такі шифри стали більш-менш легко зламними досвідченим фахівцем. Класичні шифри зберігли популярність, в основному, у вигляді головоломок (див. криптограмма). Майже всі шифри залишались беззахисними перед криптоаналізом з використанням частотного аналізу до винаходу поліалфавітного шифру, швидше за все, Альберта Леоном-Баттіста приблизно в 1467 році (хоча, існують свідчення того, що знання про такі шифри існували серед арабських вчених). Винахід Альберті полягав в тому, щоб використовувати різні шифри (наприклад, алфавіти підстановки) для різних частин повідомлення. Йому також належить винахід того, що може вважатись першим шифрувальним приладом: колесо, що частково реалізовувало його винахід (див. Шифрувальний диск Альберті). В поліалфавітному шифрі Віженера (англ. Vigenère cipher), алгоритм шифрування використовує ключове слово, яке керує підстановкою літер в залежності від того, яка літера ключового слова використовується. В середині 1800-тих, Чарльз Беббідж показав, що поліалфавітні шифри цього типу залишились частово беззахисними перед частотним аналізом.



Енігма – автомат, варіанти якого використовувались німецькими військовими починаючи з другої половини 1920-тих і до кінця Другої світової війни. Цей автомат реалізовував складний електро-механічний поліафавітний шифр для захисту таємних повідомлень. Злам шифру Енігми в Бюро Шифрів (Biuro Szyfrów), та, слід за цим, дешифрування повідомлень в Блетчі Парк (англ. Bletchley Park), було важливим чинником перемоги Союзників у війні.

Хоча частотний аналіз є потужною та загальною технікою, шифрування, на практиці, часто було ефективним; багато із криптоаналітиків не знали цю техніку. Дешифрування повідомлень без частотного аналізу практично означало необхідність знання використаного шифру, спонукаючи, таким чином, до шпигунства, підкупу, крадіжок, зрад, тощо для отримання алгоритму. Згодом, в 19-тому столітті, було визнано, що збереження алгоритму шифрування в таємниці не забезпечує захист від зламу; насправді, було встановлено, що будь-яка адекватна криптографічна схема залишається у безпеці, навіть за умови доступу сторонніх. Збереження в таємниці ключа має бути достатньою умовою захисту інформації нормальним шифром. Цей фундаментальний принцип було вперше проголошено в 1883 Огюстом Керкгофсом, і загальновідомий як принцип Керкгоффза; різкіший варіант озвучив Клод Шеннон як максиму Шеннона – ворог знає систему.

Було створено різні механічні прилади та інструменти для допомоги в шифруванні. Одним з найперших є скітала в стародавній Греції, палиця, що, як вважається, використовувалась Спартанцями в якості перестановочного шифру. В середньовіччя, було винайдено інші засоби, такі як дірочний шифр, що також використовувася для часткової стеганографії. Разом із винаходом поліалфавітних шифрів, було розроблено досконаліші засоби, такі як власний винахід Альберті шифрувальний диск, табула ректа Йогана Тритеміуса, та мультициліндр Томаса Джефферсона (повторно винайдений Базерієсом приблизно в 1900 році). Декілька механічних шифрувально/дешифрувальних приладів було створено на початку 20-го століття і багато запатентовано, серед них роторні машини – найвідомішою серед них є Енігма, автомат, що використовувася Німеччиною з кінця 20-тих і до кінця Другої світової війни. [5] Шифри, реалізовані прикладами покращених варіантів цих схем призвели до істотного підвищення криптоаналітичної складності після Другої світової війни.. Поява цифрових комп'ютерів та електроніки після Другої світової війни зробило можливим появу складніших шифрів. Більше того, комп'ютери дозволяли шифрувати будь-які дані, які можна представити в комп'ютері у двійковому виді, на відміну від класичних шифрів, які розроблялись для шифрування письмових текстів. Це зробило непридатними для застосування лінгвістичні підходи в криптоаналізі. Багато комп'ютерних шифрів можна характеризувати за їхньою роботою з послідовностями бінарних бітів (інколи в блоках або групах), на відміну від класичних та механічних схем, які, зазвичай, працюють безпосередньо з літерами. Однак, комп'ютери також знайшли застосування у криптоаналізі, що, в певній мірі, компенсувало підвищення складності шифрів. Тим не менше, гарні сучасні шифри залшались попереду криптоаналізу; як правило, використання якісних шифрів дуже ефективне (тобто, швидке і вимагає небагато ресурсів), в той час як злам цих шифрів потребує набагато більших зусиль ніж раніше, що робить криптоаналіз настільки неефективним та непрактичним, що злам стає практично неможливим.

Кредитна картка з можливостями смарт-карти. Вбудований чип розміром 3 на 5 мм показано у збільшеному вигляді на вставці. Смарт-карти намагаються поєднати портативність з достатньою потужністю для обчислення сучасних криптографічних алгоритмів.

Широкі академічні дослідження криптографії з'явились порівняно нещодавно – починаючи з середини 1970-тих, разом із появою відкритої специфікації стандарту DES (Data Encryption Standard) Національного Бюро Стандартів США, публікацій Діффі-Хелмана та оприлюдненням алгоритму RSA. Відтоді, криптографія перетворилась на загальнопоширений інструмент для передачі даних, в комп'ютерних мережах, та захисті інформації взагалі. Сучасний рівень безпеки багатьох криптографічних методів базується на складності деяких обчислювальних проблем, таких як розклад цілих чисел, або проблеми з дискретними логарифмами. В багатьох випадках, існують докази безпечності криптографічних методів лише за умови неможливості ефективного розв'язання певної обчислювальної проблеми. За одним суттєвим винятком – схема одноразових блокнотів.

Разом із пам'яттю про історію криптографії, розробники криптографічних алгоритмів та систем також мають брати до уваги майбутній поступ технологій в своїх розробках. Наприклад, постійне підвищення обчислювальної потужності комп'ютерів розширило поле для атак грубої сили. Тому, відповідно і оновлюються стандарти в сенсі вибору довжини ключа. Можливі наслідки розвитку квантових комп'ютерів вже враховуються деякими розробниками криптографічних систем; анонсована поява малих реалізацій цих комп'ютерів робить важливою попередню підготовку.

Взагалі кажучи, до початку 20-го століття, криптографія, в основному, була пов'язанна з лінгвістичними схемами. Після того, як основний акцент було зміщено, зараз криптографія інтенсивно використовує математичний апарат, включно з теорією інформації, теорією обчислювальної складності, статистики, комбінаторики, абстрактної алгебри та теорії чисел. Криптографія є також відгалуженням інженерії, але не звичним, оскільки вона має справу з активним, розумним та винахідливим супротивником; більшість інших видів інженерних наук мають справу з нейтральними силами природи. Існують дослідження з приводу взаємозв'язків між криптографічними проблемами та квантовою фізикою.

Сучасна криптографія

Симетричне шифрування

Один із циклів запатентованого блочного шифру IDEA, що використовується в деяких версіях PGP для високошвидкісного шифрування, зокрема, електронної пошти.

До алгоритмів симетричного шифрування належать методи шифрування, в яких і відправник, і отримувач повідомлення мають однаковий ключ (або, менш поширено, ключі різні але споріднені та легко обчислюються). Ці алгоритми шифрування були єдиними загально відомими до липня 1976.

Сучасні дослідження симетричних алгоритмів шифрування зосереджено, в основному, навколо блочних та потокових алгоритмів шифрування та їхньому застосуванні. Блочний шифр подібний до поліалфавітного шифру Алберті: блочні шифри отримують фрагмент відкритого тексту та ключ, і видають на виході шифротекст такого самого розміру. Оскільки повідомлення зазвичай довші за один блок, потрібен деякий метод склеювання послідовних блоків. Було розроблено декілька методів, що відрізняються в різних аспектах. Вони є режимами дії блочних шифрів та мають обережно обиратись під час застосування блочного шифру в криптосистемі.

Шифри Data Encryption Standard (DES) та Advanced Encryption Standard (AES) є стандартами блочних шифрів затверджених урядом США (однак, стандартизацію DES було скасовано після прийняття стандарту AES). Не зважаючи на те, що стандарт DES було визнано застарілим, він (та особливо його все ще дійсний варіант triple-DES) залишається досить популярним; він використовується в багатьох випадках, від шифрування в банкоматах до забезпечення приватності електронного листування та безпечному доступі до віддалених терміналів. Було також розроблено багато інших шифрів різної якості. Багато з них було зламано.

Потокові шифри, на відміну від блочних, створюють ключ довільної довжини, що накладається на відкритий текст побітово або політерно, в дечому подібно до одноразової дошки. В потокових шифрах, потік шифротексту обчислюється на основі внутрішнього стану алгоритму, який змінюється протягом його дії. Зміна стану керується ключем, та, в деяких алгоритмах, ще і потоком відкритого тексту. RC4 є прикладом добре відомого, та широко розповсюдженого потокового шифру.

Криптографічні хешувальні функції (англ. cryptographic hash functions, або англ. message digest functions) не обов'язково використовують ключі, але часто використовуються і є важливим класом криптографічних алгоритмів. Ці функції отримують дані (часто, ціле повідомлення), та обчислюють коротке, фіксованого розміру число (хеш). Гарні хешувальні функції створені таким чином, що дуже важко знайти колізії (два відкритих тексти, що мають однакове значення хешу).

Коди аутентифікації повідомлень (англ. Message authentication code, MAC) подібні до криптографічних хешувальних функцій, за виключенням того, що вони використовують секретний ключ для аутентифікації значення хешу при отриманні повідомлення. Ці функції пропонують захист проти атак на прості хешувальні функції.

Асиметричне шифрування

На відміну від симетричних, асиметричні алгоритми шифрування використовують пару споріднених ключів – відкритий та секретний. При цьому, не зважаючи на пов'язаність відкритого та секретного ключа в парі, обчислення секретного ключа на основі відкритого вважається технічно неможливим. Вітфілд Діффі та Мартін Хелман, автори першої доповіді про асиметричні алгоритми шифрування.

В асиметричних криптосистемах, відкритий ключ може вільно розповсюджуватись, в той час як приватний ключ має зберігатись в таємниці. Зазвичай, відкритий ключ використовується для шифрування, в той час як приватний (секретний) ключ використовується для дешифрування. Діффі та Хелман показали, що криптографія з відкритим ключем можлива за умови використання протоколу обміну ключами Діффі-Хелмана.

Іконка з замком в браузері Firefox, має показувати, що сторінку було відправлено через канал захищений SSL або TLS. Однак, подібна іконка не є гарантією безпеки; будь-який зламаний браузер може заводити користувачів в оману показуючи таку іконку в той час, як сторінка передається без захисту SSL або TLS.

Шифрування і розшифрування

Інформація, що може бути прочитана, осмислена і зрозуміла без яких-небудь спеціальних заходів, називається відкритим текстом (plaintext, clear text). Метод перекручування відкритого тексту таким чином, щоб сховати його суть, називається шифруванням (encryption або enciphering). Шифрування відкритого тексту приводить до його перетворення в незрозумілу абракадабру, іменовану шифртекстом (ciphertext). Шифрування дозволяє сховати інформацію від тих, для кого вона не призначається, незважаючи на те, що вони можуть бачити сам шифртекст. Протилежний процес перетворення шифртекста в його вихідний вид називається розшифруванням (decryption або deciphering).

Стійка криптографія

«У світі розрізняють два типи критографії: криптографія, що перешкодить вашій молодшій сестрі читати ваші файли, і криптографія, що перешкодить читати ваші файли урядам великих країн. Ми будемо розглядати криптографію другого типу.»

Криптографія може бути стійкою, а може бути і слабкою, як описано в приведеному прикладі. Криптографічна стійкість виміряється тим, скільки знадобиться часу і ресурсів, щоб із шифртекста відновити вихідний відкритий текст. Результатом стійкої криптографії є шифртекст, який винятково складно зламати без володіння визначеними інструментами дешифрування. Але наскільки складно? Використовуючи весь обчислювальний потенціал сучасної цивілізації – навіть мільярд комп'ютерів, що виконують мільярд операцій у секунду – неможливо дешифрувати результат стійкої криптографії до кінця існування Всесвіту.

Хтось може вирішити, що стійка криптографія зможе устояти навіть проти самого серйозного криптоаналітика. Але хто про це говорить? Ніким не доведене, що краще шифрування, доступне сьогодні, зможе вистояти проти обчислювальних можливостей комп'ютерів, доступних завтра. Проте, стійка криптографія, задіяна в PGP, – краща на сьогоднішній день.

Криптографічний алгоритм, або шифр, – це математична формула, що описує процеси шифрування і розшифрування. Щоб зашифрувати відкритий текст, криптоалгоритм працює в сполученні з ключем – словом, числом або фразою. Те саме повідомлення одним алгоритмом, але різними ключами буде перетворюватися в різний шифртекст. Захищеність шифртекста цілком залежить від двох речей: стійкості криптоалгоритму і таємності ключа. Криптоалгоритм плюс усілякі ключі і протоколи, що приводять їх у дію, складають криптосистему. PGP – це криптосистема.

У традиційній криптографії, також називаної шифруванням таємним, або симетричним, той самий ключ використовується як для шифрування, так і для розшифрування даних. Data Encryption Standart (DES) – приклад симетричного алгоритму, що широко застосовувався на Заході з 70-х років у банківській і комерційних сферах. В наш час його переміняє Advanced Encryption Standard (AES). Малюнок 2 ілюструє процес симетричного шифрування.

Шифр Цезаря

Юлій Цезар не довіряв гінцям. Тому, відправляючи листа своїм генералам, він замінював кожну букву A у своєму повідомленні на D, кожну B на E, і т. д. Тільки той, хто знав правило «зсуву на 3» міг розшифрувати його послання. Украй простий приклад симетричного шифрування – це підставний шифр. Підставний шифр заміняє кожну частину інформації іншою інформацією. Найчастіше це досягається зсувом букв алфавіту. Пари прикладів – це Секретне кільце-декодер капітана Міднайта, що могло бути у вас у дитинстві, і шифр Юлія Цезаря. В обох випадках алгоритм полягає в тому, щоб зрушити алфавіт, а ключ – це число букв, на яке зроблений зсув. Допустимо, якщо ми вирішимо зашифрувати слово «SECRET», використовуючи ключ Цезаря, рівний 3, то зрушимо латинський алфавіт так, щоб він починався з третьої букви (D).

Отже, беручи вихідний варіант ABCDEFGHIJKLMNOPQRSTUVWXYZ,

і зміщаючи усі на 3, одержуємо DEFGHIJKLMNOPQRSTUVWXYZABC, де D=A, E=B, F=C, і т. д.

Використовуючи цю схему, відкритий текст «SECRET» перетворюється в «VHFUHW». Щоб хтось міг відновити вихідний текст, ви повідомляєте йому, що ключ – 3. Очевидно, що за сьогоднішніми мірками це надзвичайно слабкий алгоритм, проте, навіть він допомагав Цезареві. І прекрасно демонструє, як діє симетричне шифрування.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.