МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Центробежное и электромагнитное сцепление.





Во всех рассмот­ренных ранее сцеплениях сила сжатия ведущих и ведомых деталей постоянна, так как создается усилием пружин. Она не зависит от передаваемого через сцепление крутящего момента. Поэтому при выключении сцепления всегда приходится преодолевать одно и то же усилие пружин, независимо от значения крутящего момен­та, которое обусловлено условиями движения автомобиля. Это зна­чительно усложняет работу водителя.

Снижение затрат физических усилий при выключении сцепле­ния достигается применением полуцентробежных и центробеж­ных сцеплений.

Полуцентробежным называется фрикционное сцепление, в ко­тором сжатие ведущих и ведомых деталей осуществляется совместно пружинами и центробежными грузиками. В полуцентробежном сцеплении (рисунок 2.13) применяются более слабые (по сравнению с обычным сцеплением) нажимные периферийные пружины 2 и центробежные грузики 1, выполненные как единое целое с рыча­гами выключения сцепления. Усилие сжатия от центробежных гру­зиков зависит от скорости их вращения, т.е. от частоты вращения коленчатого вала двигателя. Чем больше частота вращения колен­чатого вала, тем больше центробежные силы, действующие на грузики, и тем больше усилие, создаваемое грузиками, и наобо­рот. Поэтому при трогании автомобиля с места для удержания педали сцепления в выключенном состоянии, когда частота вращения коленчатого вала низкая, требуется небольшое усилие. Но при переключении передач, особенно при высоких скоростях дви­жения автомобиля, к педали сцепления необходимо приклады­вать значительное усилие для преодоления суммарной силы сжа­тия пружин и центробежных грузиков. Кроме того, при движении автомобиля в тяжелых дорожных условиях с небольшой скорос­тью сцепление может пробуксовывать, что приводит к снижению его долговечности. В связи с этим полуцентробежные сцепления на современных автомобилях применяются очень редко.

Центробежным называется фрикционное сцепление, в кото­ром сжатие ведущих и ведомых деталей осуществляется центро­бежными грузиками.

Центробежное сцепление является разомкнутым. Оно выклю­чено при неработающем двигателе и выключается автоматически при малой частоте вращения коленчатого вала. При выключенном сцеплении реактивный диск 2 (рисунок 2.13) находится на некотором расстоянии от нажимного диска 7. Положение реактивного диска обусловлено рычагами 5, концы которых упираются в выжимной подшипник муфты 6 выключения, а муфта фиксируется упором 7. Нажимной диск подтягивается к реактивному диску отжимными пружинами 8. Это обеспечивает необходимый зазор между нажим­ным диском 7, ведомым диском 10 и маховиком 11 двигателя.

При увеличении частоты вращения коленчатого вала двигате­ля центробежные грузики 9 под действием центробежных сил рас­ходятся. Грузики упираются хвостовиками в нажимной 1 и реак­тивный 2 диски, перемещают нажимной диск к маховику, созда­вая при этом давление на ведомый диск 10. При небольшой де­формации пружин 4, что происходит даже при незначительном увеличении частоты вращения коленчатого вала, рычаги 5 вы­ключения поворачиваются на своих опорах и между концами ры­чагов 5 и выжимным подшипником муфты 6 выключения образу­ется необходимый зазор.



При торможении автомобиля до полной остановки сцепление автоматически выключается и исключает остановку двигателя. При переключении передач сцепление выключается с помощью педа­ли. Торможение автомобиля двигателем при малых скоростях дви­жения (на спуске, при движении накатом) возможно только при перемещении упора 7, для чего имеется специальный привод с места водителя. В этом случае сцепление включается нажимными пружинами 4, установленными между реактивным диском 2 и кожухом 3, и сцепление становится постоянно замкнутым.

Центробежное сцепление обеспечивает плавность включения при трогании автомобиля с места и автоматическое выключение при снижении частоты вращения коленчатого вала до минималь­ного значения, препятствуя остановке двигателя. Однако сцепление может пробуксовывать при малых скоростях движения авто­мобиля в тяжелых дорожных условиях.

а
в
б

 

Рисунок 2.13 – Конструкция полуцетробежного и центробежного сцепления

а – полуцентробежное сцепление; б — схема; в — конструкция; 1 — нажимной диск; 2— реактивный диск; 3 — кожух; 4, 8 — пружины; 5 — рычаг; 6 — муфта; 7 — упор; 9 — грузики; 10 — ведомый диск; 11 —маховик.

Электромагнитные сцепления.Электромагнитным называется сцепление, в котором сжатие ведущих и ведомых деталей осуще­ствляется электромагнитными силами. Электромагнитные сцеп­ления являются постоянно разомкнутыми.

Схема электромагнитного фрикционного сцепления представ­лена на рисунке 2.14. Нажимной диск 2 соединен пальцами с диском 4, в котором находится электромагнит 8. К электромагниту подво­дится ток от генератора через щетки 7 и контактные кольца 5. Якорь 3 электромагнита закреплен на кожухе 1 сцепления, кото­рый связан с маховиком // двигателя.

При малой частоте вращения коленчатого вала двигателя сцеп­ление выключено пружинами 9. При увеличении частоты враще­ния коленчатого вала ток, подводимый к электромагниту, созда­ет магнитное поле, и электромагнит притягивается к якорю. Вме­сте с электромагнитом перемещается нажимной диск 2, который прижимает ведомый диск 10 к маховику 11 двигателя, и сцепле­ние включается.

При переключении передач сцепление выключается контакт­ным устройством, которое находится в рычаге переключения пе­редач и прерывает поступление тока в электромагнит.

Муфта 6 предназначена для блокировки сцепления при пуске двигателя буксированием автомобиля.

Рисунок 2.14 – Схема электромагнитного порошкового (а) и фрикционного (б) сцепления; а: А, Б, В — зазоры; 1 — ведущая часть; 2 — неподвижный корпус; 3 — обмотка возбуждения; 4 — ведомая часть

б: 1— кожух; 2 — нажимной диск; 3 — якорь; 4 — диск; 5 — кольцо; 6 — муфта; 7— щет­ки; 8 — электромагнит; 9 — пружина; 10 — ведомый диск; 11 — маховик

 

Электромагнитное порошковое сцепление получило некоторое распространение на автомобилях малого класса. Ведущим элементом сцепления является маховик с закрепленными на нем магнитопроводами с обмотками возбуждения. Ведомый диск закреплен на ведущем вале коробки передач. Между магнитопроводами и ведомым диском имеется воздушный зазор, в который вводится специальный фрикционный порошок, обладающий высокими магнитными свойствами. При отсутствии тока в обмотках возбуждения между ведущими и ведомыми элементами сцепления силовой связи нет — сцепление выключено. Если к обмоткам возбуждения подводится электрический ток, то за счет образования магнитного поля, частицы порошка выстраиваются по силовым линиям магнитного поля, и создается силовое взаимодействие между ведущими и ведомыми элементами сцепления. Силовая связь зависит от силы тока, поступающего в обмотку возбуждения. Основное достоинство такой конструкции заключается в том, что управление сцеплением можно перенести с педали сцепления на ручной, кнопочный вариант управления, что актуально для водителей с ограниченными физическими возможностями.

Электромагнитные сцепления относятся к сцеплениям с авто­матическим управлением, у которых педаль сцепления на автомо­биле обычно отсутствует. Автоматическое управление сцеплением может быть обеспечено применением вакуумного, пневматичес­кого, гидравлического, электрического или комбинированного приводов.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.