МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Двухвыборочный t-критерий для независимых выборок





Алгоритмы параметрических критериев.

Параметрические критерии применяются для выборок с нормальным законом распределения. Формула расчета этих критериев содержат параметры выборки: среднее, дисперсии и др. Поэтому они называются параметрическими. Нормальность закона распределения должна быть статистически доказана с помощью одного из критериев согласия: критерий Пирсона, F-критерия Фишера, -критерия Колмогорова и др.

В ряде случаев параметрические критерии мощнее непараметрических критериев. У последних выше вероятность возникновения ошибки второго рода – принятия ложной нулевой гипотезы.

К параметрическим методам относятся следующие:

– Критерий Стьюдента

– Критерий Фишера

– Методы однофакторного анализа

– Методы двухфакторного анализа

 

Критерий Стьюдента

Назначение.

Критерий позволяет оценивать различия средних значений выборок, имеющих нормальное распределение.

Описание критерия.

Критерий применим для сравнения средних значений двух выборок полученных до и после воздействия некоторого фактора.

Данный критерий был разработан Уильямом Госсеттом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны (а руководство Гиннесса считало таковой использование статистического аппарата в своей работе), статья Госсетта вышла в журнале «Биометрика» под псевдонимом «Student» (Студент). Зависимые(связанные) и независимые (несвязанные) выборки При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми. Примеры зависимых выборок:
  • пары близнецов,
  • два измерения какого-либо признака до и после экспериментального воздействия,
  • мужья и жёны
  • и т. п.
В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми, например:
  • мужчины и женщины,
  • психологи и математики.
Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.

Двухвыборочный t-критерий для независимых выборок

Для двух несвязанных выборок(наблюдения не относятся к одной и той же группе объектов ) возможны два варианта расчета:

– когда дисперсии известны

– когда дисперсии неизвестны, но равны друг другу.

1. Предварительно проверяется нормальность закона распределения по одному из критериев согласия.

2. Рассчитывается средне арифметические значения и для каждой выборки по формуле где – значение i-го результата наблюдения.

3. Рассчитывается - эмпирическое значение критерия Стьюдента:

 

Где

квадратичного отклонения. Здесь и – оценки дисперсий.

 

Рассмотрим сначала равночисленные выборки . В этом случае

В случае наравночисленных выборок , выражение

 

В обоих случаев подсчет числа степеней свободы осуществляется по формулам

Понятно, что при численном равенстве выборок

4. Эмпирическое значение критерия Стьюдента сравнивается с критическим значением (по таблице 1 приложения) для данного числа степеней свободы.



Нулевая гипотеза при заданном уровне значимости принимается, если эмпирическое значение .

Пример.

Психолог измерял время сложной сенсомоторной реакции выбора (в мс) в контрольной и экспериментальных группах. В экспериментальную группу (Х) входило 9 спортсменов высокой квалификации. Контрольной группой (Y) являлись 8 человек, активно не занимающиеся спортом. Психолог проверяет гипотезу о том , что средняя скорость сложной сенсомоторной реакции выбора у спортсменов выше, чем та же величина у людей, не занимающихся спортом.

 

 

Группы Отклонения от среднего Квадраты отклонений
X Y
-22 -58
-106
-17
-2
-77
-36
-8
- -56 - -
Сумма
Среднее        

Cреднее арифметические значения X и У: , в контрольной группе .

Тогда

Число степеней свободы k=9+8-2=15





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.