ПОЗНАВАТЕЛЬНОЕ Сила воли ведет к действию, а позитивные действия формируют позитивное отношение Как определить диапазон голоса - ваш вокал
Игровые автоматы с быстрым выводом Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими Целительная привычка Как самому избавиться от обидчивости Противоречивые взгляды на качества, присущие мужчинам Тренинг уверенности в себе Вкуснейший "Салат из свеклы с чесноком" Натюрморт и его изобразительные возможности Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д. Как научиться брать на себя ответственность Зачем нужны границы в отношениях с детьми? Световозвращающие элементы на детской одежде Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия Как слышать голос Бога Классификация ожирения по ИМТ (ВОЗ) Глава 3. Завет мужчины с женщиной 
Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д. Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. | Дискретные случайные величины Комбинаторика И теория вероятностей 1. Сколькими способами можно расставить 6 книг на одной полке и 10 книг на другой? 2. Сколькими способами три награды могут быть распределены между 12 участниками соревнований? 3. Имеется шесть бульдозеров и четыре экскаватора. Сколькими способами можно выбрать для работы на объекте 2 бульдозера и 2 экскаватора? 4. Устройство состоит из 7 элементов, 4 из которых изношены. При включении устройства случайным образом включаются 3 элемента. Найти вероятность, что они окажутся не изношенны? 5. На атомной электростанции 18 сменных инженеров, из них 5 женщины. В смену занято 4 человека. Найти вероятность того, что в случайно выбранную смену среди них не будет более трех женщин. Классическое определение вероятности 1. На карточках написаны цифры 1,2,3,4,5,6,7. Наудачу взяли две карточки. Какова вероятность, что одно число будет меньше трех, а другое больше трех? 2. Устройство секретного замка включает в себя 4 ячейки. В первой ячейке осуществляется набор одной из четырех букв A, B, C, D, в трех остальных – одной из десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (цифры могут повторяться). Чемуравнавероятность того, что замок будет открыт с первой попытки? 3. На отрезке АВ длины l поставлена наудачу точка М. Какова вероятность того, что расстояние этой точки от середины отрезка меньше, чем расстояние этой точки до ближайшего края. 4. В ящике 12 красных и 4 синих пуговиц. Вынимают наугад две пуговицы. Какова вероятность того, что пуговицы будут одноцветными? 5. В ящике лежат 10 красных, 8 синих и 5 зеленых шаров; шары отличаются только цветом. Наудачу вынимают два шара. Какова вероятность того, что оба вынутых шара окажутся одного цвета? 6. Рабочий обслуживает три станка, вероятность того, что в течение часа для первого станка не потребуется помощь рабочего равна 0,9, для второго – 0,8, для третьего – 0,7. Найти вероятность того, что, по крайней мере, для двух станков не потребуется помощь рабочего. 7. Вероятность попадания в мишень для данного стрелка равна 0,7. Стрелок делает два выстрела по мишени. Найти вероятности следующих событий: а) стрелок попадет 2 раза; б) попадет один раз; в) попадет хотя бы один раз. 8. Заготовки поступают из двух бункеров: 70% из первого и 30-% из второго. При этом материал первого бункера имеет 10% брака, а второго – 20%. Какова вероятность того, что наудачу взятая заготовка бракованная. 9. Вся продукция проверяется двумя контролерами. Вероятность того, что изделие попадет на проверку к первому контролеру, равна, 0,35, а ко второму – 0,65. Вероятность пропустить нестандартные изделия для первого контролера равна 0,03, для второго – 0,01. Взятое наудачу изделие с маркой «стандарт» оказалось бракованным. Какова вероятность, что изделие проверялось первым контролером? 10. Вероятность того, что пассажир опоздает к поезду, равна 0,01. Найти наиболее вероятное число опоздавших из 500 пассажиров. 11. Отдел технического контроля проверяет 900 изделий на стандартность. Вероятность брака равна 0,1. Найти вероятность того, что в данной партии окажется не более 50 бракованных деталей. 12. Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти число испытаний , при котором с вероятностью 0,9876 можно ожидать, что относительная частота появления события отклоняется от его вероятности по абсолютной величине не более чем на 0,04. Дискретные случайные величины 1. Найти у Х | -4 | -2 | -14 | | | | Р | 0,1 | 0,2 | 0,1 | 0,3 | у | 0,1 | 2. M(X)=6. Используя свойства математического ожидания, найдите M(2X+5). 3. Игральную кость бросили 12 раз. Найти математическое ожидание и дисперсию числа появлений единицы. 4. Игральный кубик брошен два раза. Составить закон распределения Х – числа выпавших очков. Найти , , , . 5. В урне 5 белых шаров и 25 черных. Вынули 1 шар. Случайная величина Х – число вынутых белых шаров. Найти таблицу распределения и функцию распределения величины Х. Найти Найти и . 6. Найти математическое ожидание и дисперсию, среднее квадратическое отклонение и функцию распределения дискретной случайной величины по следующей таблице: |