МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Вспомогательные функции ТРИЗ





1. Решение научных и исследовательских задач.

2. Выявление проблем, трудностей и задач при работе с техническими системами и при их развитии.

3. Выявление причин брака и аварийных ситуаций.

4. Максимально эффективное использование ресурсов природы и техники для решения многих проблем.

5. Объективная оценка решений.

6. Систематизирование знаний любых областей деятельности, позволяющее значительно эффективнее использовать эти знания и на принципиально новой основе развивать конкретные науки.

7. Развитие творческого воображения и мышления.

8. Развитие творческих коллективов.

ТРИЗ не является строгой научной теорией. ТРИЗ представляет собой обобщённый опыт изобретательства и изучения законов развития науки и техники.

В результате своего развития ТРИЗ вышла за рамки решения изобретательских задач в технической области, и сегодня используется также в нетехнических областях (бизнес, искусство, литература, педагогика, политика и др.).

Введение[]

Возможно ли научиться изобретать более успешно, направленно, как-то учитывать весьма богатый изобретательский опыт предшественников, и если да, то в чём этот опыт состоит? Каково действительно соотношение в успешном изобретательстве изобретательской техники (которую можно и должно выявлять и осваивать) и соответствующих природных (то есть врождённых, не поддающихся новообразованию) способностей изобретателя? Советский инженер-патентовед, изобретатель, писатель и учёный Генрих Альтшуллер был убеждён в возможности выявить из опыта предшественников устойчиво повторяющиеся приёмы успешных изобретений и возможности обучить этой технике всех заинтересованных и способных к обучению. С этой целью было проведено исследование более 40 тысяч авторских свидетельств и патентов и на основе выявленных закономерностей развития технических систем и приёмов изобретательства разработана Теория решения изобретательских задач (ТРИЗ), знаменем которой стал призыв превратить искусство изобретательства в точную науку[2].

Основы ТРИЗ]

Изобретательская ситуация и изобретательская задача[править | править вики-текст]

Когда техническая проблема встаёт перед изобретателем впервые, она обычно сформулирована расплывчато и не содержит в себе указаний на пути решения. В ТРИЗ такая форма постановки называется изобретательской ситуацией. Главный её недостаток в том, что перед инженером оказывается чересчур много путей и методов решения. Перебирать их все трудоёмко и дорого, а выбор путей на удачу приводит к малоэффективному методу проб и ошибок.

Поэтому первый шаг на пути к изобретению — переформулировать ситуацию таким образом, чтобы сама формулировка отсекала бесперспективные и неэффективные пути решения. При этом возникает вопрос, какие решения эффективны, а какие — нет?

Г. Альтшуллер предположил, что самое эффективное решение проблемы — такое, которое достигается «само по себе», только за счёт уже имеющихся ресурсов. Таким образом он пришёл к формулировке идеального конечного результата (ИКР): «Некий элемент (X-элемент) системы или окружающей среды сам устраняет вредное воздействие, сохраняя способность выполнять полезное воздействие».

На практике идеальный конечный результат редко достижим полностью, однако он служит ориентиром для изобретательской мысли. Чем ближе решение к ИКР, тем оно лучше.



Получив инструмент отсечения неэффективных решений, можно переформулировать изобретательскую ситуацию в стандартную мини-задачу: «согласно ИКР, всё должно остаться так, как было, но либо должно исчезнуть вредное, ненужное качество, либо появится новое, полезное качество». Основная идея мини-задачи в том, чтобы избегать существенных (и дорогих) изменений и рассматривать в первую очередь простейшие решения.

Формулировка мини-задачи способствует более точному описанию задачи:

· Из каких частей состоит система, как они взаимодействуют?

· Какие связи являются вредными, мешающими, какие — нейтральными, и какие — полезными?

· Какие части и связи можно изменять, и какие — нельзя?

· Какие изменения приводят к улучшению системы, и какие — к ухудшению?

Противоречия[]

После того, как мини-задача сформулирована и система проанализирована, обычно быстро обнаруживается, что попытки изменений с целью улучшения одних параметров системы приводят к ухудшению других параметров. Например, увеличение прочности крыла самолёта может приводить к увеличению его веса, и наоборот — облегчение крыла приводит к снижению его прочности. В системе возникает конфликт, противоречие.

ТРИЗ выделяет 3 вида противоречий (в порядке возрастания сложности разрешения):

· административное противоречие: «надо улучшить систему, но я не знаю как (не умею, не имею права) сделать это». Это противоречие является самым слабым и может быть снято либо изучением дополнительных материалов, либо принятием административных решений.

· техническое противоречие: «улучшение одного параметра системы приводит к ухудшению другого параметра». Техническое противоречие — это и есть постановка изобретательской задачи. Переход от административного противоречия к техническому резко понижает размерность задачи, сужает поле поиска решений и позволяет перейти от метода проб и ошибок к алгоритму решения изобретательской задачи, который либо предлагает применить один или несколько стандартных технических приёмов, либо (в случае сложных задач) указывает на одно или несколько физических противоречий.

· физическое противоречие: «для улучшения системы, какая-то её часть должна находиться в разных физических состояниях одновременно, что невозможно». Физическое противоречие является наиболее фундаментальным, потому что изобретатель упирается в ограничения, обусловленные физическими законами природы. Для решения задачи изобретатель должен воспользоваться справочником физических эффектов и таблицей их применения.

Информационный фонд]

Он состоит из:

· приёмов устранения противоречий и таблицы их применения;

· системы стандартов на решение изобретательских задач (типовые решения определённого класса задач);

· технологических эффектов (физических, химических, биологических, математических, в частности, наиболее разработанных из них в настоящее время — геометрических) и таблицы их использования;

· ресурсов природы и техники и способов их использования.

Система приёмов[]

Анализ многих тысяч изобретений позволил выявить, что при всём многообразии технических противоречий большинство из них решается 40 основными приёмами.

Работа по составлению списка таких приёмов была начата Г. С. Альтшуллером ещё на ранних этапах становления теории решения изобретательских задач. Для их выявления понадобился анализ более 40 тысяч авторских свидетельств и патентов[9]. Приёмы эти и сейчас представляют для изобретателей большую эвристическую ценность. Их знание во многом позволяет облегчить поиск ответа.

Но эти приёмы показывают лишь направление и область, где могут быть сильные решения. Конкретный же вариант решения они не выдают. Эта работа остаётся за человеком.


Система приёмов, используемая в ТРИЗ, включает простые и парные (прием-антиприем).

Простые приёмы позволяют разрешать технические противоречия. Среди простых приёмов наиболее популярны 40 основных приёмов.

Парные приёмы[10] состоят из приёма и антиприёма, с их помощью можно разрешать физические противоречия, так как при этом рассматривают два противоположных действия, состояния, свойства.

Стандарты на решение изобретательских задач[]

Стандарты на решение изобретательских задач представляют собой комплекс приёмов, использующих физические или другие эффекты для устранения противоречий. Это своего рода формулы, по которым решаются задачи. Для описания структуры этих приёмов Альтшуллером был создан вещественно-полевой (вепольный) анализ.

Система стандартов состоит из классов, подклассов и конкретных стандартов. Эта система включает 76 стандартов. С помощью этой системы можно не только решать, но выявлять новые задачи и прогнозировать развитие технических систем.

Известно около пяти тысяч физических эффектов и явлений. В разных областях техники могут применяться различные группы физических эффектов, но есть и общеупотребительные. Их примерно 300—500.

Альтернативные подходы

Существуют и иные подходы, помогающие изобретателю раскрыть свой творческий потенциал. Большая часть этих методов являются эвристическими. Все они были основаны на психологии и логике, и ни один из них не претендует на роль научной теории.

1. Метод проб и ошибок

2. Мозговой штурм

3. Метод синектики

4. Морфологический анализ

5. Метод фокальных объектов

6. Метод контрольных вопросов

Критика ТРИЗ[править | править вики-текст]

После смерти Г. С. Альтшуллера ТРИЗ испытала застой в развитии. В нём, а также в сложности практического применения теории, по мнению критиков виновны следующие проблемы:[12]

· не существует методологии решения задач, несмотря на попытки сформировать её исходя из некоторых закономерностей развития техники,

· искажение диалектического подхода из-за введения некоторых новых понятий,

· появление новых модификаций АРИЗ усложняло алгоритм вместо устранения допущенных неточностей,

· не было найдено пригодных для реальных задач механизмов переходов от сформулированного противоречия к его разрешению,

· множество инструментов ТРИЗ представляли собой перебор вариантов несмотря на декларацию отказа от них,

· использование в вепольном анализе физических полей, существование которых не доказано,

· невозможность внедрения ТРИЗ в производство по причине сильной зависимости от личного выбора человека.

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.