МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Методика и порядок выполнения работы





Лабораторная работа 6

Тема: Комплексные числа.

Цель: оказание студентам помощи в овладении навыками решения задач с применением комплексных чисел.

Теоретическое обоснование

Комплексным числом zназывается выражение , где a и b – действительные числа, i – мнимая единица, которая определяется соотношением:

При этом число a называется действительной частью числа z (a = Re z), а b- мнимой частью (b = Im z).

Если a =Re z =0, то число z будет чисто мнимым, если b = Im z = 0, то число z будет действительным.

 

Числа и называются комплексно – сопряженными.

 

Два комплексных числа и называются равными, если соответственно равны их действительные и мнимые части:

 

Комплексное число равно нулю, если соответственно равны нулю действительная и мнимая части.

Понятие комплексного числа имеет геометрическое истолкование. Множество комплексных чисел является расширением множества действительных чисел за счет включения множества мнимых чисел. Комплексные числа включают в себя все множества чисел, которые изучались ранее. Так натуральные, целые, рациональные, иррациональные, действительные числа являются, вообще говоря, частными случаями комплексных чисел.

Если любое действительное число может быть геометрически представлено в виде точки на числовой прямой, то комплексное число представляется точкой на плоскости, координатами которой будут соответственно действительная и мнимая части комплексного числа. При этом горизонтальная ось будет являться действительной числовой осью, а вертикальная - мнимой осью.

 
 


у

 

A(a, b)

 

 

r b

j

 

0 a x

 

Таким образом, на оси ОХ располагаются действительные числа, а на оси ОY – чисто мнимые.

С помощью подобного геометрического представления можно представлять числа в так называемой тригонометрической форме.

 

 

Тригонометрическая форма числа.

 

Из геометрических соображений видно, что . Тогда комплексное число можно представить в виде:

Такая форма записи называется тригонометрической формой записи комплексного числа.

При этом величина r называется модулемкомплексного числа, а угол наклона j -аргументомкомплексного числа.

 

.

 

Из геометрических соображений видно:

 

Очевидно, что комплексно – сопряженные числа имеют одинаковые модули и противоположные аргументы.

 

Действия с комплексными числами.

 

Основные действия с комплексными числами вытекают из действий с многочленами.

 

1) Сложение и вычитание.

 

 

2) Умножение.

 

В тригонометрической форме:

,

 

С случае комплексно – сопряженных чисел:

3) Деление.

 

В тригонометрической форме:

 

 

4) Возведение в степень.

Из операции умножения комплексных чисел следует, что

В общем случае получим:

,

 

где n – целое положительное число.

 

Это выражение называется формулой Муавра.

(Абрахам де Муавр (1667 – 1754) – английский математик)

 

Формулу Муавра можно использовать для нахождения тригонометрических функций двойного, тройного и т.д. углов.

 

Пример. Найти формулы sin2j и cos2j.

 

Рассмотрим некоторое комплексное число

Тогда с одной стороны .



По формуле Муавра:

Приравнивая, получим

Т.к. два комплексных числа равны, если равны их действительные и мнимые части, то

Получили известные формулы двойного угла.

 

5) Извлечение корня из комплексного числа.

 

Возводя в степень, получим:

Отсюда:

 

 

Таким образом, корень n – ой степени из комплексного числа имеет n различных значений.

 

Показательная форма комплексного числа.

 

Рассмотрим показательную функцию

 

Можно показать, что функция w может быть записана в виде:

 

Данное равенство называется уравнением Эйлера.

Для комплексных чисел будут справедливы следующие свойства:

 

1)

2)

3) где m – целое число.

 

Если в уравнении Эйлера показатель степени принять за чисто мнимое число (х=0), то получаем:

Для комплексно – сопряженного числа получаем:

 

Из этих двух уравнений получаем:

 

Этими формулами пользуются для нахождения значений степеней тригонометрических функций через функции кратных углов.

 

Если представить комплексное число в тригонометрической форме:

и воспользуемся формулой Эйлера:

 

Полученное равенство и есть показательная форма комплексного числа.

Методика и порядок выполнения работы

Пример 1. Даны два комплексных числа . Требуется а) найти значение выражения в алгебраической форме, б) для числа найти тригонометрическую форму, найти z20, найти корни уравнения

 

Решение

a) Очевидно, справедливо следующее преобразование:

 

 

Далее производим деление двух комплексных чисел:

 

 

Получаем значение заданного выражения: 16(-i)4 = 16i4 =16.

 

 

б) Число представим в виде , где

 

Тогда .

 

Для нахождения воспльзуемся формулой Муавра.

 

 

Если , то

 

 

Пример 2.

1) Найти модуль и аргумент чисел и . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

2) Найти: а). ; б). ; в).

Решение

1) Изобразим числа на комплексной плоскости. При этом числу будет соответствовать точка , числу - точка .

 

Для нахождения модуля и аргумента заданных чисел воспользуемся формулами:

и

Получим:

, ,

, .

Чтобы перейти от алгебраической формы записи комплексного числа к тригонометрической и показательной применим формулы:

и .

Использовав ранее полученные результаты, получим:

,

,

,

.

2) а)

б)

в) Применим формулу .

при : ;

при : ;

при :

Пример 3.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) ;

б) .

Решение

а)

б) По определению .

,

 

Пример 4. Построить область плоскости , определяемую данными неравенствами:

Решение

Искомым множеством является пересечение кольца и внутренней части угла :

Вариант №1

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) ;

б) .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №2

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №3

Задание 1.

а) Найти модуль и аргумент чисел = и = Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №4

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

а) ;

Вариант №5

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №6

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №7

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №8

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №9

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

Вариант №10

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №11

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №12

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №13

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №14

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №15

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №16

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №17

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №18

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №19

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №20

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №21

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №22

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №23

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .

Задание 3. Построить область плоскости , определяемую данными неравенствами.

;

Вариант №24

Задание 1.

а) Найти модуль и аргумент чисел = и = . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2.Вычислить значение функции

©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.