МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Устройство и принцип действия аппарата для гальванизации





Лабораторная работа №13

Изучение работы полупроводникового диода

И двухполупериодного выпрямителя

Студент должен знать: основные положения и понятия зонной теории; различие между металлами, полупроводниками и диэлектриками согласно зонной теории; типы полупроводников, образование и свойства p-n перехода; устройство и вольтамперную характеристику полупроводникового диода; схему и принцип работы двухполупериодного выпрямителя со сглаживающим фильтром; электропроводность тканей организма, первичное действие на них постоянного тока; применение постоянного тока в лечебных целях (гальванизация и электрофорез).

Студент должен уметь: работать с электроизмерительными приборами, выпрямителем, использовать для исследования осциллограф.

Краткая теория

Выпрямитель, получивший в медицине название аппарата для гальванизации, служит для преобразования промышленного переменного тока в постоянный.

Этот аппарат состоит из выпрямляющего устройства, потенциометра и миллиамперметра. Потенциометр служит для регулирования выпрямленного напряжения, а миллиамперметр для измерения силы тока, пропускаемого через больного. Выпрямляющее устройство выполнено на основе полупроводниковых диодов.

Полупроводниковые диоды

В основу работы полупроводниковых диодов положено выпрямляющее свойство электронно-дырочного (p-n) перехода.

P-n переход представляет тонкий слой (10-4-10-5 см), образуемый на границе между двумя соприкасающимися полупроводниками с разными типами проводимости (рис.1). Так как в кристалле p – типа концентрация дырок значительно больше, чем в кристалле n –типа, то они при контакте будут диффундировать из первого кристалла во второй.


 

 

 


Рис. 1

Аналогично, из n – полупроводника в p – полупроводник будут диффундировать электроны. В пограничном слое электроны и дырки встречаются и рекомбинируют друг с другом, вследствие чего область контакта обедняется основными носителями и зарядами, и в контактной зоне образуется двойной электрический слой за счет нескомпенсированных ионов примесей положительных ионов доноров в n – области и отрицательных ионов акцепторов в р – области. Возникшее в этом слое электрическое поле напряженностью будет препятствовать дальнейшему переходу электронов в направлении n→p и дырок в направлении p→n. Через некоторое время при определенном значении напряженности установится подвижное (динамическое) равновесие, при котором прекратятся преимущественные переходы электронов и дырок в указанных направлениях, т.е. количество электронов и дырок, перешедших из одного полупроводника в другой путем диффузии будет равно количеству электронов и дырок, возвращающихся обратно под действием электрического поля .

В итоге в приконтактной области образуется тонкий слой с большим электросопротивлением, который называется запирающим слоем (т.к. вследствие рекомбинации концентрация носителей заряда в нем мала).

Сопротивление запирающего слоя можно менять с помощью внешнего электрического поля.

Если напряженность внешнего поля совпадает по направлению с напряженностью (рис.2), то оно еще дальше отодвинет электроны и дырки от места контакта полупроводников. Запирающий слой, объединенный носителями зарядами, расширится, а его сопротивление возрастет. Ток в этом случае практически отсутствует (величина тока, создаваемого неосновными носителями заряда, будет пренебрежимо мала, т.к. концентрации не основных носителей в полупроводниках весьма малы). Такое напряжение внешнего поля (n→p) называется запирающим, а малый ток – обратным.



 
 

 

 


Рис. 2

Изменим полярность внешнего напряжения (рис.3). Тогда напряженность внешнего поля, направленная противоположно напряженности , будет перемещать свободные электроны, и дырки по направлению к контактному слою. Прилежащие слои полупроводников обогащаются носителями зарядов, запирающий слой сужается, а его сопротивление уменьшается. При определенном значении приложенного внешнего напряжения запирающий слой исчезнет и через полупроводник пойдет большой ток. Такое направление внешнего электрического поля (p→n) называется пропускным, а ток прямым.

 
 

 


Рис. 3

Вследствие этого сопротивление n-p -перехода от направления поля, он обладает односторонней проводимостью, что позволяет использовать его для выпрямления переменного тока. Если к такому контакту приложить переменное напряжение, через p-n – переход ток будет идти только в одном направлении: от p- проводника к n – полупроводнику.

Зависимость силы тока от приложенного напряжения (вольтамперная характеристика полупроводникового диода) изображена на рис. 4. Здесь же приведены обозначения диодов на схемах, соответствующие пропускному и запирающему направлениям включения внешнего электрического поля.

Выпрямительные свойства полупроводниковых диодов характеризуют коэффициентом выпрямления К, который равен:

.

Важной характеристикой полупроводниковых диодов является максимальное обратное рабочее напряжение (см. рис. 4), превышение которого может привести к пробою диода и нарушению его работы.

Полупроводниковые диоды, обладая малыми габаритами, большой надежностью, долговечностью и высоким коэффициентом полезного действия, нашли использование в выпрямителях и, следовательно, являются основной частью аппарата для терапии постоянным током.

 
 


Рис.4

Устройство и принцип действия аппарата для гальванизации

Основным узлом аппарата является выпрямитель со сглаживающим фильтром.

Выпрямитель состоит из трансформатора, полупроводниковых диодов, сглаживающего фильтра (С1, С2 и др.) и потенциометра Rн. Переменное напряжение сетки преобразуется трансформатором в нужное по величине напряжение, которое снимается с вторичной обмотки и подается на диоды, включенные по мостовой схеме.

Рассмотрим процесс выпрямления переменного тока в данной схеме выпрямителя. Предположим, что в какой-то момент времени точка А (по схеме рис.5) имеет положительный потенциал по отношению к точке В. тогда ток протекает через диод Д1 (пропускное направление), потенциометр Rн и Д3 .

Во второй полупериод полярность точки А и В меняется на противоположную. Тогда ток потечет через диод Д2, потенциометр Rн и Д4.

 
 

Рис.5

Таким образом, в оба полупериода через потенциометр Rн течет ток, постоянный по направлению, но переменной по величине (рис. 6), те пульсирующий ток.

 

Рис. 6


Для сглаживания пульсаций тока используют сглаживающий фильтр, состоящий из двух конденсаторов С1, и С2 и дросселя Др (рис. 7).

Рис. 7

 

При возрастании тока конденсаторы заряжаются. В тот момент, когда ток начинает уменьшаться, конденсаторы, разряжаясь через Rн, поддерживают ток, не давая падать ему до нуля. Это приводит к ослаблению амплитуды пульсаций тока. Одновременно с этими процессами происходит гашение колебаний тока в дросселе возникает ток самоиндукции противоположного направления, а при уменьшении основного тока, ток самоиндукции стремится поддержать его. Таким образом, пульсация основного тока еще больше уменьшается и через Rн течет ток, постоянный уже не только по направлению, но и по величине.

Порядок выполнения работы

Упражнение 1. Снятие вольтамперной характеристики диода.

Измерения проводятся на макете, схема которого представлена на рис.8

1. Начертить таблицы 1 и 2.

Таблица 1

Uпр, мВ 0 100 200 300 400 500 600 700 800 900 1000
Iпр, мА 0

 

 

Рис. 8

Таблица 2

Uобр, В 0 20 40 60 80 100 120
Iобр, мкА

2. Для измерения прямого тока поставить все тумблеры в левое положение и включить макет в сеть. Устанавливая потенциометром R1 напряжение Uпр согласно таблице 1, измерить соответствующие значения силы тока Iпр.

3. Для измерений обратного тока поставить все тумблеры в правое положение. Устанавливая потенциометром R2 напряжение Uобр согласно таблице 2, измерить соответствующие значения силы тока Iобр.

4. Выключить макет из сети. По полученным данным построить вольтамперную характеристику диода I=f(U) на одном графике, причем Uпр и Iпр откладывать на положительных полуосях координат, а Uобр и Iобр - на отрицательных (масштабы для Iпр и Iобр, Uпр и Uобр - разные ).

5. Оценить по полученной вольтамперной характеристике прямое Rпр и обратное Rобр сопротивления диода.

6. Оценить абсолютные погрешности всех измерительных приборов.

Упражнение 2. Исследование работы выпрямителя со сглаживающим фильтром

1. Перечертите схему изучаемого двухполупериодного выпрямителя со сглаживающим фильтром (рис .9) в свою тетрадь. Аналогичные выпрямители используются в медицине в качестве источника постоянного тока, например, для гальванизации и электрофореза.

Рис. 9

2. Подключить осциллограф к входным клеммам выпрямителя (точки А и В) и затем включить оба прибора в сеть.

3. Получить на экране осциллографа и зарисовать наблюдаемые осциллограммы, соответствующие:

а) Выпрямляемому переменному току (точки А и В на схеме).

б) Однополупериодному выпрямлению:

1) без сглаживающего фильтра. Для этого подключить осциллограф к выходным клеммам выпрямителя и поставить все тумблеры в нижнее положение.

2) с фильтром из:

а) одного конденсатора С1. Для этого поставить тумблер К2 в верхнее положение;

б) двух конденсаторов С1 и С2. Для этого поставить тумблер К3 в верхнее положение;

в) двух конденсаторов С1 и С2 и индуктивности L. Для этого поставить тумблер К4 в верхнее положение.

Примечание. Все четыре осциллограммы (1; 2а, 2б, 2в) рисуются разными линиями на одном графике в том же временном масштабе, что и в случае А.

в) Двухполупериодному выпрямлению:

1) без сглаживающего фильтра. Для этого все тумблеры, кроме К1, поставить в нижнее положение.

2) с фильтром... - выполняется аналогично пункту 2) для случая Б.

3) выключить оба прибора из сети.

Задание по УИРС.

Оценить по вольтамперной характеристике контактную разность потенциалов р-n-перехода (Dj »Uпр, правее которого характеристика становится практически линейной, т.е. выполняется закон Ома).

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.