МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Рассмотрим наиболее общие законы цепей переменного тока





Лабораторная работа №11

Определение импеданса биологического объекта

Студент должен знать: основные характеристики переменного тока (мгновенные, амплитудные, эффективные значения напряжения и силы переменного тока, период, частоту и фазу переменного тока); теорию цепей переменного тока с R, L и C - нагрузками с выводом формул, векторные диаграммы; формулы импеданса при последовательном и параллельном соединении R, L и C с построением векторных диаграмм и выводом формул; закон Ома для цепи переменного тока; эквивалентные электрические схемы и емкостно-омическую природу импеданса биологической ткани; физические основы реографии.

Студент должен уметь: работать с электроизмерительными приборами; экспериментально получать зависимости сопротивлений от частоты переменного тока: индуктивного - , емкостного - , биологической ткани- ; производить соответствующие расчеты и по графику функциональной зависимости импеданса биообъекта от частоты переменного тока оценивать его активное сопротивление.

Краткая теория

Изучение переменных токов имеет большое значение при рассмотрении физиологических процессов в организме человека и животных. Переменные токи нашли большое применение при лечении различных заболеваний. На использовании переменных токов основаны ряд физиотерапевтических методов лечения и диагностики.

Переменные токи могут оказывать раздражающее действие на ткани организма. Оно связанно с кратковременным смещением ионов под действием переменного электрического поля, которое также может вызывать изменение концентрации тканевых ионов у клеточных мембран. Раздражающее действие переменного тока в значительной мере зависит от его частоты. С увеличением частоты, когда смещение ионов в направленном движении делается соизмеримым со смещением их при тепловом движении, ток уже не оказывает на ткани раздражающего действия. При этом оказывается тепловое действие тока. Это свойство используется для прогревания тканей организма высокочастотными переменными токами (диатермия).

Другими физиотерапевтическими методами, использующими высокочастотные переменные токи, является дарсонвализация – воздействие высокочастотным током в виде разряда, проходящего между специальным электродом и поверхностью кожи больного (аппараты типа «Искра» и др.). По сравнению с постоянным током для сопротивления в цепи переменного тока помимо активной нагрузки имеет большое значение наличие в цепи электроёмкости «С» и индуктивности «L».

Сопротивление, которое оказывает электрическая цепь, содержащая компоненты R, L, C, соединённые последовательно называется импедансом и рассчитывается при их последовательном соединении по формуле:

.

Так как в биологических объектах индуктивность незначительна (L » 0), то формула для расчёта их импеданса принимает вид:

.

Известно, что активное омическое сопротивление R биологической ткани практически не зависит от частоты тока, а ёмкостное - значительно уменьшается по мере увеличения частоты, что приводит к увеличению проводимости всей емкостно-омической системы.

Импеданс тканей организма зависит от их кровенаполнения. На этом основан метод исследования функции кровообращения, называемый реографией. При этом в течение цикла сердечной деятельности регистрируются изменения импеданса определённого участка тканей, на границе которого накладываются электроды.



Рассмотрим наиболее общие законы цепей переменного тока

1. Если к концам проводника с сопротивлением R (рис.1) приложено переменное напряжение, величина которого во времени определяется уравнением

(1)

(где - амплитудное значение напряжения, - круговая частота, равная = , - частота тока), то в цепи пойдёт ток, величина которого определяется согласно закону Ома уравнением:

, (2)

где - активное сопротивление, - амплитудное значение тока.

Из уравнений (1) и (2) видно, что ток и напряжение на активном сопротивлении совпадает по фазе.

2. Рассмотрим цепь переменного тока с индуктивностью L (рис.2) без омического сопротивления (R=0). Тогда в цепи пойдёт ток:

. (3)

Под действием этого тока в катушке индуктивности возникает э.д.с. самоиндукции:

. (4)

Для замкнутой цепи, согласно второму правилу Кирхгофа (в замкнутом контуре алгебраически сумма электродвижущих сил равна алгебраической сумме падений напряжений) можно написать:

Тогда:

Вычисляя из уравнения (3) и подставляя это значение для нахождения U имеем:

, но следовательно:

(5)

Сравнивая уравнения (3) и (5) видим, что напряжение на индуктивности опережает ток на угол .

Величину индуктивного сопротивления можно определить из уравнения (5) при амплитудном значении напряжения, т.е. при

, получим , (6)

где амплитудные значения напряжения и тока. Поделив обе части уравнения (6) на получим , но - индуктивное сопротивление. Тогда , т.е. величина индуктивного сопротивления прямо пропорциональна от индуктивности катушки и частоте переменного тока.

3. Рассмотрим цепь переменного тока с конденсатором ёмкостью C (рис.3). Активная нагрузка в цепи отсутствует 0. Приложим к зажимам конденсатора напряжение:

. (8)

Обкладки конденсора получают заряд, изменяющийся пропорционально напряжению:

. (9)

В цепи конденсатора пойдёт ток, величина которого равна скорости изменения заряда конденсатора или пропорциональна скорости изменения напряжения на его зажимах.

. (10)

Получим закон изменения тока в конденсаторе. Для этого найдем из уравнения (8):

(11)

Подставляя в уравнение (10) значение из уравнения (11), получим:

. (12)

Сравнивая уравнения (12) и (8) видим, что ток опережает напряжение на конденсаторе на угол .

Найдем величину ёмкостного сопротивления из уравнения (12). При амплитудном значении тока, когда будем иметь:

. (13)

Так как , то, поделив уравнения (13) на , получим выражение для величины ёмкостного сопротивления:

. (14)

 

Рис.1 Рис.2 Рис.3

Подключение в цепь переменного тока регистра сопротивления «R» (рис. 1), индуктивности «L» (рис.2) и конденсатора

электроемкостью «С» (рис. 3)

т.е. ёмкостное сопротивление обратно пропорционально ёмкости конденсатора и частоте переменного тока.

4. Реальные цепи переменного тока содержат все три компонента: R, L и C. Рассмотрим такую цепь при последовательном соединении (рис. 4). Напряжение вызывает ток , где - сдвиг фаз между током и напряжением, причем + в том случае, когда >XC, а - в том случае, когда XL<XC.

Рис. 4





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.