МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Решаемые в ходе лабораторной работы задачи





Введение

Современные медицинские технологии базируются на фундаментальных результатах, полученных в физике. Примером является компьютерная медицинская томография. Такие виды томографии, как рентгеновская, магнитно-резонансная и позитронно-эмиссионная обеспечивают получение анатомической информации с большим пространственным разрешением и позволяют регистрировать локальные метаболические процессы. Значительные перспективы с точки зрения портативности, безопасности, простоты и надежности устройств в настоящее время имеет оптическая диффузионная томография [1]. Отличительной чертой современной медицинской диагностики является также продвижение в сторону неинвазивных, портативных, относительно недорогих методов и аппаратов.

Спектрофотометрические методы на протяжении нескольких десятилетий занимают прочное положение в медицинской диагностике, в том числе функциональной. Широко представлены спектрофотометрические методы в лабораторной диагностике. Спектрофотометрия (СФМ) биологических тканей в красном и ближнем инфракрасном (К-БИК) диапазонах длин волн – активно развивающееся направление исследований.

Спектрофотометрия представляет совокупность методов фотометрирования потоков оптического излучения от источников излучения или после его взаимодействия с образцами в зависимости от длины волны. В узком смысле под спектрофотометрией понимают теорию и методологию измерений фотометрических характеристик образца, безразмерных коэффициентов, определяемых отношением потоков: Х= Ф/Ф0 (где Ф0 – поток, падающий на образец, Ф – поток, наблюдаемый после взаимодействия с образцом). В зависимости от направлений освещения и наблюдения, величина Х является коэффициентом пропускания, отражения или рассеяния. Значения коэффициента Х зависят не только от свойств измеряемого образца: оптических постоянных, однородности, формы и состояния поверхности, - но и от длины волны и условий измерения: направлений освещения и наблюдения, положения освещаемого участка на образце, поляризации, температуры.

Среди наиболее широко использующихся в клинической практике спектрофотометрических методов особое место занимает пульсоксиметрия. Другое важное направление – спектрофотометрия с глубинным зондирование биоткани и регистрацией рассеянного в обратном направлении излучения. Примером является оптическая тканевая оксиметрия, служащая для определения степени оксигенации гемоглобина крови в работающей мышечной ткани, в головном мозге новорожденных с патологией или взрослых в процессе активной деятельности мозга [1,2,3]. В данном методе регистрируются рассеянное в обратном направлении излучение. СФМ биотканей широко востребована в таких областях современной медицинской практики, как хирургия, анестезиология и реанимация, неонатолоия, неврология, ангиология, функциональная диагностика, реабилитация, спортивная медицина.

Физической основой методов СФМ является взаимодействие фотонов света с биологической тканью.

 

Цель лабораторной работы

Работа направлена на ознакомление студентов с оптическими свойствами биологических тканей, с физическими принципами спектрофотометрии биотканей in vivo в красной и ближней инфракрасной областях спектра, ознакомление с принципами работы современного спектрофотометрического прибора – тканевого оксиметра.

Решаемые в ходе лабораторной работы задачи

1) изучение теоретических основ спектрофотометрии биотканей: режима с постоянной интенсивностью зондирующего излучения и многодистантным фазово-модуляционным подходом;

2) ознакомление с алгоритмами расчета оптических параметров биотканей по измеряемым параметрам интенсивности рассеянного излучения;

3) изучение функциональных возможностей спектрофотометрического прибора “OxiplexTS” и программного обеспечения “OxiTS” и методики проведения измерений на предложенном образце биоткани или фантоме;

4) экспериментальное подтверждение основных законов распространения излучения красного и ближнего инфракрасного диапазонов длин волн в сильно рассеивающих и слабо поглощающих средах;

5) экспериментальное определение параметров, характеризующих оптические свойства биологических тканей и сравнение полученных результатов с литературными данными.

 

Теоретическая часть





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.