МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Погрешности измерения сопротивлений.





ОСНОВЫ ТЕОРИИ

Закон Ома для однородного участка цепи.

Если на концах однородного участка цепи существует разность потенциалов Dj=j2-j1, то в данной цепи возникает электрический ток. Сила тока I , текущего через данный участок, пропорциональна разности потенциалов Dj на концах участка и обратно пропорциональна сопротивлению R этого участка цепи (или этого проводника)

(1)

Величина U = I×R называется падением напряжения на проводнике и численно равна количеству тепла, выделяющегося в проводнике при прохождении через него единичного электрического заряда.

Для однородного участка (т.е. не содержащего э.д.с.) разность потенциалов на концах участка численно равна падению напряжения на этом участке, т.е. Dj= U.

Если обычный аналоговый вольтметр (отклонение стрелки которого обусловлено током, проходящим в рамке или катушке) присоединить к точкам 1 и 2 участка цепи, то он покажет разность потенциалов Dj между этими точками. Разность потенциалов в этом случае будет равна падению напряжения U на вольтметре, т.е.

(2)

где Rv - сопротивление вольтметра,

Iv - ток, протекающий через вольтметр.

Сопротивление проводников.

Если участок цепи представляет собой проводник длиной l постоянного сечения S, однородного химического состава, то сопротивление R этого проводника определяется по формуле:

(3)

где r- удельное сопротивление материала.

Удельное сопротивление численно равно сопротивление однородного проводника единичной длины и единичного сечения. Оно зависит от химического состава материала проводника, его температуры, и измеряется в системе СИ в Ом×м. На практике часто пользуются внесистемной единицей - Ом×мм2

При комнатной температуре наименьшее удельное сопротивление имеют проводники из химически чистых металлов. Удельное сопротивление сплавов имеет большую величину, что позволяет применять их для изготовления резисторов с большим сопротивлением (реостаты, нагревательные элементы, шунты и добавочные сопротивления). В табл. 1 даны значения удельного сопротивления некоторых материалов.

Таблица 1.

Металл или сплавы (состав %) Удельное сопротивление при 20°С (Ом×мм2/м)
Серебро 0,016
Медь 0,017
Алюминий 0,028
Железо 0,093
Константан (58,8% Cu, 40% N, 1,2% Mn) 0,44-0,52
Нихром 1,0-1,1
Графит 8,0

 

Методы измерения сопротивления.

Одним из методов измерения сопротивления проводника является метод "амперметра-вольтметра", состоящим в практическом использовании закона Ома для однородного участка цепи. Из формул (1) и (2) следует

(4)

т.е. измеряя разность потенциалов U на концах проводника и величину тока I, протекающего через него, можно определить сопротивление R проводника.

Другим методом измерения сопротивлений является метод мостовых схем, который рассматривается в другой лабораторной работе. В мостовых схемах не требуется измерять токи и напряжения, поэтому они дают более точные результаты.

Погрешности измерения сопротивлений.

При измерениях возникают погрешности, имеющие различную природу. Погрешность метода (или теоретическая погрешность) связана с несовершенством метода, с упрощениями, принятыми в уравнениях для измерений. Погрешность метода проявляется, прежде всего, как систематическая, для компенсации которой возможно введение поправок. При измерении сопротивления методом "амперметра-вольтметра" возникает погрешность, определяемая способом подключения амперметра и вольтметра к исследуемому участку цепи.



Для измерения сопротивления R вольтметр и амперметр могут быть включены в цепь по одной из схем, изображенных на рис.1

В схеме 1 а (технический метод с точным измерением тока) вольтметр измеряет разность потенциалов U =j -j на последовательно соединенных проводнике сопротивлением R и амперметре PA сопротивлением RA. Поэтому разность потенциалов, измеренная вольтметром между точками 1 и 2, будет равна сумме падений напряжения на сопротивлении R проводника и сопротивлении RA амперметра:

(5)

 
 

а б

Рис.1

Расчет по формуле (4) будет содержать систематическую погрешность, обусловленную особенностями метода (упрощениями, принятыми при таком расчете).

Величина истинного сопротивления R проводника будет равна

(6)

где через U обозначена разность потенциалов на участке 1-2.

Следовательно, разница DR между результатами измерения сопротивления RЭ по формуле (4) и истинным R и является той методической ошибкой, которая возникает при данном способе включения измерительных приборов.

(7)

Относительная погрешность этого метода равна:

(8)

Т.е. точность измерения сопротивления будет тем больше, чем меньше сопротивление RA амперметра по сравнению с сопротивлением R проводника. (Идеальным будет амперметр с бесконечно малым собственным сопротивлением).

В схеме (технический метод с точным измерением напряжения) амперметром измеряется суммарный ток I , текущий через сопротивление R и вольтметр PV , имеющий собственное сопротивление Rv . Разность потенциалов в этом случае одинакова как для проводника, так и для вольтметра.

Тогда по закону Ома (1):

(9)

(9)

где IR и IV - токи, текущие соответственно через проводник и вольтметр PV , U - разность потенциалов, измеренная вольтметром.

Так как измеряемый ток равен I = IR + IV то, учитывая (9), получим

Если не учитывать тока IV , текущего через сопротивление RV вольтметра, то величину сопротивления RЭ проводника также можно найти по упрощенной формуле (4).

Величина истинного сопротивления R проводника будет равна

(10)

(10’)

Следовательно, в этом способе измерения также возникает погрешность метода

Относительная погрешность этого метода равна:

(11)

т.е. точность измерения сопротивления будет тем больше, чем больше сопротивление вольтметра по сравнению с сопротивлением R проводника Идеальным будет вольтметр с бесконечно большим собственным сопротивлением. Высокоомными являются электронные аналоговые и цифровые вольтметры, вносящие малую погрешность.

Погрешности метода возникают при использовании формулы (4). Они могут быть скорректированы, если известны сопротивления амперметра RA или вольтметра RV . Формулы (6) и (10) дают уже исправленный результат измерений, свободный от погрешности этого типа.

Другим источником погрешности являются инструментальные погрешности, обусловленные конструкцией прибора. Инструментальные погрешности содержат как систематическую, так и случайную составляющую. При каждом отдельном измерении сопротивления R мы производим измерения тока I и разности потенциалов U с погрешностью, определяемой классом точности измерительного прибора

где gA- класс точности амперметра, имеющего предельный ток Im,

gV - класс точности вольтметра с пределом Um.

Погрешность определения сопротивления, обусловленная погрешностями приборов определяется по правилам переноса погрешностей косвенных измерений

(12)

(12’)

(13)

(13’)

Из формул (13)-(13') видно, что приборную погрешность можно уменьшить, применяя амперметр и вольтметр высокого класса точности, а также выбирать токи и напряжения такой величины, чтобы стрелки приборов при снятии показаний находились во второй половине шкалы (возможно ближе к пределу измерений).

Случайные погрешности возникают при сочетании не воспроизводимых от измерения к измерению факторов: нестабильности источника тока, погрешности оператора, случайной составляющей приборной погрешности и т.д. Для определения случайной погрешности проводят серию многократных измерений Ri при разных токах и напряжениях. Статистическая погрешность DRСТ определяется в соответствии с правилами обработки многократных измерений.

Полная погрешность определяется композицией приборной DRПР и статистической DRСТ погрешностей

(14)

(14’)

ОПИСАНИЕ УСТАНОВКИ

Прибор FRM-01 представлен на рис.2. К основанию (1) прикреплена колонна (2) с нанесенной миллиметровой шкалой (3). На колонне укреплены два неподвижных кронштейна (4) и один подвижный кронштейн (5), который может передвигаться вдоль колонны и фиксироваться в любом положении. Между верхним и нижним кронштейном натянут нихромовый провод (6).

 
 

Рис. 2

Через контактный зажим на подвижном кронштейне обеспечивается хорошее гальваническое соединение с проводом. На подвижном кронштейне нанесена черта, которая облегчает определение по шкале длины отрезка измеряемого нихромового провода. Нижний, верхний и центральный подвижный контакты нихромового провода подведены при помощи проводов низкого сопротивления к измерительной части прибора (7), которая помещена в центральном корпусе.

На лицевой панели корпуса расположены амперметр PA, вольтметр PV , клавиша W1 для включения установки в сеть напряжением 220 В, переключатели W2 и W3, ручка реостата R1 регулировки тока. Отжатая клавиша переключателя W3 позволяет использовать нихромовый провод в мостовых схемах измерения сопротивления. Нажатая клавиша W3 позволяет произвести измерение активного сопротивления провода с использованием амперметра и вольтметра.

Если клавиша W2 отжата, то измерение происходит по схеме рис.1а - технический метод с точным измерением тока, если нажата- по схеме рис.1б - технический метод с точным измерением напряжения.

ВЫПОЛНЕНИЕ РАБОТЫ

1. Заготовьте таблицу результатов измерений.

Таблица 2

I i ,мА U i , B RЭ i ,Ом R i ,Ом
         

 

2. Ручку регулятора тока установите в положение минимального тока (поверните против часовой стрелки до упора). Передвигая подвижный кронштейн (5), установите произвольную длину l проводника. Определите длину проводника, его диаметр (микрометром), класс точности приборов и запишите результаты в табл. 3

Таблица 3 -Справочные данные

l, мм d, мм R A ,Ом g A R V,Ом g V
           

3. Включите установку и произведите пять измерений сопротивления при разных токах методом точного измерения тока

4. Заготовьте таблицу, аналогичную табл. 2. Произведите аналогичную серию измерений методом с точным измерением напряжения

5. Выключите установку.

ОБРАБОТКА РЕЗУЛЬТАТОВ

1. Вычислите неисправленное RЭi и исправленное значения Ri сопротивления проводника по формулам (4), (6) и (10), а также их средние значения <RЭ> и <R> в каждом методе измерения.

2. Определите погрешности метода em1 и em2 по формулам (8)и (11) для каждого метода измерения.

3. Определите приборные погрешности DRПР и eR для двух опытов по формулам (12)-(13') (для минимального и максимального тока), используя данные более точного метода.

4. Определите случайную погрешность DRСТ и eСТ (для более точного метода).

5. Определите полную абсолютную и относительную погрешности измерения сопротивления DR и eR по формулам (14) и (14').

6. Определите удельное сопротивление r нихромового провода по формуле (3).

7. Выведите формулу для определения погрешности по правилам оценки погрешностей косвенных измерений (через погрешности DR, Dd, и Dl). Определите абсолютную и относительную Dr погрешности для наиболее точного результата измерений <R>.

ВЫВОДЫ

1. Запишите результат измерения R и r в стандартной форме.

2. Какой метод измерения сопротивления точнее? Подтвердите это сравнением погрешностей обоих методов включения амперметра и вольтметра.

3. Какой вид погрешности (метода, приборная или статистическая) имеет наибольшее влияние на результат определения погрешности сопротивления в Ваших опытах?

4. Следует ли учитывать сопротивления амперметра и вольтметра в данных опытах?

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Дайте определение разности потенциалов и падения напряжения на участке цепи. В каком случае они равны?

2. Каков физический смысл сопротивления проводника? От чего оно зависит?

3. В чем состоит метод измерения сопротивления с точным измерением тока? За счет чего возникает погрешность этого метода? Чему она равна, и как ее можно уменьшить?

4. В чем состоит метод измерения сопротивления с точным измерением напряжения? За счет чего возникает погрешность этого метода? Чему она равна, и как ее можно уменьшить?

5. Как определяются приборные и случайные погрешности измерения в данной работе?

 

ЛИТЕРАТУРА: [1: 34]; [2: 9.1, 9.2]; [3: 98].





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.