МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Смысл натурального числа, полученного в результате измерения величин





Лекция 4. Натуральное число как результат измерения величины

1. Понятие величины. Однородные и разнородные величины. Положительная скалярная величина.

2. Смысл натурального числа, полученного в результате измерения.

3. Смысл суммы и разности.

4. Смысл произведения и частного натуральных чисел, полученных в результате измерения величин.

 

Понятие положительной скалярной величины

Известно, что числа возникли из потребности счета и измерения, но, если для счета достаточно натуральных чисел, то для измерения величин нужны и другие числа. В данной теме в качестве результата измерения величин будем рассматривать только натуральные числа. Определив натуральное число как меру величины, мы выясним, какой смысл имеют арифметические действия над такими числами. Эти знания нужны учителю начальных классов не только для обоснования выбора действий при решении задач с величинами, но и для понимания еще одного подхода к трактовке натурального числа, существующего в начальном обучении математике.

Таким образом, понятие величины как одно из важнейших математических понятий может служить теоретической основой для введения понятия числа и изучения действий над ними.

Определение 1. Под величинами в математике понимают свойства объектов, которые допускают сравнение (<, >, =) и которым можно поставить в соответствие некоторую количественную характеристику.

Форма, цвет, материал - не являются величинами, т.к. они не допускают сравнения (например, нельзя сказать «более деревянный» или «менее деревянный»).

Длина отрезка, площадь фигуры, масса тела, количество, цена, стоимость, масса, время, расстояние - величины.

Однородные и неоднородные величины

Величины, которые выражают одно и тоже свойство объектов, называются величинами одного рода или однородными величинами. В противном случае величины называют разнородными.

Например, длина и расстояние, длина стола и длина комнаты – это однородные величины. Масса и длина – разнородные величины.

Виды величин

- Скалярная величина (определяется одним числовым значением). Пример: длина, масса.

- Положительная скалярная величина (принимает только положительные числовые значения). Пример: длина, масса, время, стоимость, количество товара.

- Векторная величина (характеризуется числом и направлением). Пример: скорость ветра, сила.

- Тензорная величина (характеризуется несколькими числами, в школе не изучаются). Пример: физическое состояние спортсмена, паспортные данные человека.

- Латентная величина (нематематическая, им нельзя поставить в соответствие число, сравнение происходит на интуитивной основе). Пример: ум, красота.

Аксиомы положительных скалярных величин

Аксиома 1: Любые две положительные скалярные величины можно сравнить. Если a и b - однородные положительные скалярные величины, то для них справедливо одно из трех утверждений: 1) a=b или 2) a<b или 3) a>b.

Аксиома 2: Любые однородные положительные скалярные величины можно складывать. В результате получится величина того же рода.

Аксиома 3: Из большей положительной скалярной величины можно вычесть меньшую положительную скалярную величину, ей однородную. В результате получится величина того же рода.

Аксиома 4: Любую положительную скалярную величину можно умножить на положительное действительное число. В результате получится величина того же рода.



Аксиома 5:Любую положительную скалярную величину можно разделить на величину, ей однородную. В результате получится положительное действительное число.

Положительной скалярной величине можно поставить в соответствие количественную характеристику - численное значение (меру) при выбранной единице измерения. Отыскать численное значение величины возможно в результате ее измерения.

Выясняя смысл натурального числа как меры величины, все рассуждения будем вести на примере одной величины - длины отрезка.

Смысл натурального числа, полученного в результате измерения величин

Уточним сначала понятие «отрезок состоит из отрезков».

Определение 2. Считают, что отрезок х состоит из от­резков х1, х2 ,…, хn, если он является их объединением и никакие два из них не имеют общих внутренних точек, хотя и могут иметь общие концы.

В этом же случае говорят, что отрезок х разбит на отрезки х1, х2 ,…, хn и пишут х = х1 + х2 + хn .

Пусть задан отрезок х, его длину обозначим X. Выберем из множества отрезков некоторый отрезок е, назовем его единичным отрезком,а длину обозначим буквой Е.

Определение 3. Если отрезок х состоит из аотрезков, каждый из которых равен единичному отрезку е, то число а называют численным значением длины X данного отрезка при единице длины Е.

Пишут: X = а Е или а = mЕ(Х).

Например, отрезок х (рис. 1) состоит из 6 отрезков, равных отрезку е. Если длину единичного отрезка обозначить буквой Е, а длину отрезка х буквой Х, то можно написать, что Х = 6Е или 6 = тЕ(Х).

Из данного определения получаем, что ­что натуральное число как результат измерения длины отрезка (или как мера длины отрезка) показывает, из скольких единичных отрезков состоит отрезок, длина которого измеряется. При выбранной единице длины Е это число единственное.

Рис.1

В связи с таким подходом к натуральному числу сделаем два замечания:

1. При переходе к другой единице длины численное значение длины заданного отрезка изменяется, хотя сам отрезок остается неизменным. Так, если в качестве единицы длины выбрать дли­ну отрезка е₁, (рис. 1), то мера длины отрезка х будет равна числу 3. Записать это можно так: X = 3 ∙ Е ₁ или mE (X) = 3.

2. Если отрезок х состоит из а отрезков, равных е, а отре­зок у - из b отрезков, равных е, то а = b тогда и только тогда, когда отрезки х и у равны.

Аналогично можно истолковать смысл натурального чис­ла и в связи с измерением других величин. Так, в записи 3 см2 число 3 означает, что фигура F состоит из трех единичных квадратов с площадью, равной квадратному сантиметру,

Выясним теперь, какой смысл имеют сумма и разность натуральных чисел, полученных в результате измерения величин.

Смысл суммы и разности

Теорема 1. Если отрезок х состоит из отрезков у и z и дли­ны отрезков у и z выражаются натуральными числами, то мера длины отрезка х равна сумме мер длин его частей.

Доказательство. Обозначим длины отрезков х, у и z со­ответственно буквами X, Y и Z. Пусть m(Y)=a, m(Z)=b при единице длины Е. Тогда отрезок у разбивается на а частей, каждая из которых равна отрезку длины Е, отрезок z разбива­ется на b таких частей. А потому весь отрезок х разбивается на а + b таких частей.

Значит, m(X) = a + b = m(Y) + m(Z).▀

Из этой теоремы следует, что сумму натуральных чисел a и b можно рассматривать как меру длины отрезка х, состоящего из отрезков у и z, мерами длин которых являются числа a и b

a + b = mE(Y) + mE(Z) = mE(Y + Z).

Аналогичный смысл имеет сумма натуральных чисел, по­лученных в результате измерения других положительных ска­лярных величин.

Покажем, как используется данный подход к обоснованию выбора действия сложения при решении текстовых задач.

Пример 1. Обосновать выбор действия сложения при решении задачи: «В саду собрали 7 кг смородины и З кг малины. Сколько всего килограммов ягод собрали?»

Решение: В задаче две величины - масса смородины и масса малины. Известны их численные значения. Требуется найти численное значение массы, которая получится, если данные массы сло­жить. Для этого, согласно рассмотренной теореме, надо сло­жить численные значения массы смородины и массы малины, т.е. получить выражение 7 + 3. Это математическая модель данной задачи. Вычислив значение выражения 7 + 3, получим ответ на вопрос задачи,

Теорема 2. Если отрезок хсостоит из отрезков у и z и дли­ны отрезков х и у выражаются натуральными числами, то мера длины отрезка zравна разности мер длин отрезков х и у.

Доказательство этой теоремы проводится аналогично до­казательству предыдущей.

Из этой теоремы следует, что разность натуральных чи­сел а и b можно рассматривать как меру длины такого от­резка z = х - у, что если мера длины отрезка х равна а, мера длины отрезка у равна b

a - b = mE(X ) - mE(Y) = mE(X - Y).

Аналогичный смысл имеет разность натуральных чисел, полученных в результате измерения других положительных скалярных величин.

Выясним, как используется данный подход к обоснованию выбора действия вычитания при решении текстовых задач

Пример 2. Обосновать выбор действия вычитания при решении задачи: «Купили 7 кг картофеля и капусты. Сколько килограммов картофеля купили, если капусты было 3 кг?»

Решение: В задаче рассматривается масса овощей, известно ее чис­ленное значение. Эта масса складывается из массы картофе­ля и массы капусты, численное значение которой также известно. Требуется узнать численное значение массы картофе­ля. Так как массу картофеля можно получить, вычитая из всей массы купленных овощей массу капусты, то численное значе­ние массы картофеля находят действием вычитания: 7-3. (Вычислив значение этого выражения, получим ответ на вопрос задачи.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.