МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ Основные формулы • Уравнение гармонических колебаний  где х — смещение колеблющейся точки от положения равновесия; t — время; А, ω, φ— соответственно амплитуда, угловая частота, начальная фаза колебаний; — фаза колебаний в момент t. • Угловая частота колебаний , или , где ν и Т — частота и период колебаний. • Скорость точки, совершающей гармонические колебания,  • Ускорение при гармоническом колебании  • Амплитуда А результирующего колебания, полученного при сложении двух колебаний с одинаковыми частотами, происходящих по одной прямой, определяется по формуле  где a1и А2— амплитуды составляющих колебаний; φ1 и φ2— их начальные фазы. • Начальная фаза φ результирующего колебания может быть найдена из формулы  • Частота биений, возникающих при сложении двух колебаний, происходящих по одной прямой с различными, но близкими по значению частотами ν1 и ν2,  • Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях с амплитудами A1 и A2 и начальными фазами φ1 и φ2,  Если начальные фазы φ1 и φ2 составляющих колебаний одинаковы, то уравнение траектории принимает вид  т. е. точка движется по прямой. В том случае, если разность фаз , уравнение принимает вид  т. е. точка движется по эллипсу. • Дифференциальное уравнение гармонических колебаний материальной точки , или , где m — масса точки; k — коэффициент квазиупругой силы (k=тω2). • Полная энергия материальной точки, совершающей гармонические колебания,  • Период колебаний тела, подвешенного на пружине (пружинный маятник),  где m — масса тела; k — жесткость пружины. Формула справедлива для упругих колебаний в пределах, в которых выполняется закон Гука (при малой массе пружины в сравнении с массой тела). Период колебаний математического маятника  где l — длина маятника; g — ускорение свободного падения. Период колебаний физического маятника  где J — момент инерции колеблющегося тела относительно оси колебаний; а — расстояние центра масс маятника от оси колебаний; — приведенная длина физического маятника. Приведенные формулы являются точными для случая бесконечно малых амплитуд. При конечных амплитудах эти формулы дают лишь приближенные результаты. При амплитудах не более ошибка в значении периода не превышает 1 %. Период крутильных колебаний тела, подвешенного на упругой нити,  где J — момент инерции тела относительно оси, совпадающей с упругой нитью; k — жесткость упругой нити, равная отношению упругого момента, возникающего при закручивании нити, к углу, на который нить закручивается. • Дифференциальное уравнение затухающих колебаний , или , где r — коэффициент сопротивления; δ — коэффициент затухания: ; ω0— собственная угловая частота колебаний *  • Уравнение затухающих колебаний  где A (t) — амплитуда затухающих колебаний в момент t; ω — их угловая частота. • Угловая частота затухающих колебаний  О Зависимость амплитуды затухающих колебаний от времени I где А0 — амплитуда колебаний в момент t=0. • Логарифмический декремент колебаний  где A (t) и A (t+T) — амплитуды двух последовательных колебаний, отстоящих по времени друг от друга на период. • Дифференциальное уравнение вынужденных колебаний , или , где — внешняя периодическая сила, действующая на колеблющуюся материальную точку и вызывающая вынужденные колебания; F0 — ее амплитудное значение;  • Амплитуда вынужденных колебаний  • Резонансная частота и резонансная амплитуда и  Примеры решения задач Пример 1.Точка совершает колебания по закону x(t)= , где А=2 см. Определить начальную фазу φ, если x(0)= см и х,(0)<0. Построить векторную диаграмму для мо- мента t=0. Решение. Воспользуемся уравнением движения и выразим смещение в момент t=0 через начальную фазу:  Отсюда найдем начальную фазу:  * В приведенных ранее формулах гармонических колебаний та же величина обозначалась просто ω (без индекса 0). Подставим в это выражение заданные значения x(0) и А: φ= = . Значению аргумента удовлетворяют два значения угла:  Для того чтобы решить, какое из этих значений угла φ удовлет- воряет еще и условию , найдем сначала :  Подставив в это выражение значение t=0 и поочередно значения начальных фаз и , найдем  Так как всегда A>0 и ω>0, то условию удовлетворяет толь ко первое значение начальной фазы. Таким образом, искомая начальная фаза  По найденному значению φ постро- им векторную диаграмму (рис. 6.1). Пример 2.Материальная точка массой т=5 г совершает гармоничес- кие колебания с частотой ν =0,5 Гц. Амплитуда колебаний A=3 см. Оп- ределить: 1) скорость υточки в мо- мент времени, когда смещение х= = 1,5 см; 2) максимальную силу Fmax, действующую на точку; 3) Рис. 6.1 полную энергию Е колеблющейся точ ки. Решение. 1. Уравнение гармонического колебания имеет вид (1) а формулу скорости получим, взяв первую производную по времени от смещения: (2) Чтобы выразить скорость через смещение, надо исключить из формул (1) и (2) время. Для этого возведем оба уравнения в квадрат, разделим первое на А2, второе на A2 ω 2 и сложим: , или  Решив последнее уравнение относительно υ, найдем  Выполнив вычисления по этой формуле, получим см/с.
Знак плюс соответствует случаю, когда направление скорости совпадает с положительным направлением оси х, знак минус — когда направление скорости совпадает с отрицательным направлением оси х. Смещение при гармоническом колебании кроме уравнения (1) может быть определено также уравнением  Повторив с этим уравнением такое же решение, получим тот же ответ. 2. Силу действующую на точку, найдем по второму закону Ньютона: (3) где а — ускорение точки, которое получим, взяв производную по времени от скорости: , или  Подставив выражение ускорения в формулу (3), получим  Отсюда максимальное значение силы  Подставив в это уравнение значения величин π, ν, т и A, найдем  3. Полная энергия колеблющейся точки есть сумма кинетической и потенциальной энергий, вычисленных для любого момента времени. Проще всего вычислить полную энергию в момент, когда кинетическая энергия достигает максимального значения. В этот момент потенциальная энергия равна нулю. Поэтому полная энергия E колеблющейся точки равна максимальной кинетической энергии Tmax: (4) Максимальную скорость определим из формулы (2), положив : . Подставив выражение скорости в фор- мулу (4), найдем  Подставив значения величин в эту формулу и произведя вычисления, получим  или мкДж. Пример 3. На концах тонкого стержня длиной l = 1 м и массой m3=400 г укреплены шарики малых размеров массами m1=200 ги m2=300г. Стержень колеблется около горизонтальной оси, перпен- дикулярной стержню и проходящей через его середину (точка О на рис. 6.2). Определить период Т колебаний, совершаемых стержнем. Решение. Период колебаний физического маятника, каким является стержень с шариками, определяется соотношением (1) где J — момент инерции маятника относительно оси колебаний; т — его масса; lС — расстояние от центра масс маятника до оси. Момент инерции данного маятника равен сумме моментов инерции шариков J1 и J2 и стержня J3: (2) Принимая шарики за материальные точки, выразим моменты их инерции:  Так как ось проходит через середину стержня, то его момент инерции относительно этой оси J3= = . Подставив полученные выражения J1 , J2 и J3 в формулу (2), найдем общий момент инерции фи- зического маятника:  Произведя вычисления по этой формуле, найдем  Рис. 6.2 Масса маятника состоит из масс шариков и массы стержня:  Расстояние lС центра масс маятника от оси колебаний найдем, исходя из следующих соображений. Если ось х направить вдоль стержня и начало координат совместить с точкой О, то искомое расстояние l равно координате центра масс маятника, т. е. , или  Подставив значения величин m1, m2, m, l и произведя вычисления, найдем см. Произведя расчеты по формуле (1), получим период колебаний физического маятника:  Пример 4.Физический маятник представляет собой стержень длиной l= 1 м и массой 3т1 с прикрепленным к одному из его концов обручем диаметром и массой т1. Горизонтальная ось Oz маятника проходит через середину стержня перпендикулярно ему (рис. 6.3). Определить период Т колебаний такого маятника. Решение. Период колебаний физического маятника определяется по формуле (1) где J — момент инерции маятника относительно оси колебаний; т — его масса; lC — расстояние от центра масс маятника до оси колебаний. Момент инерции маятника равен сумме моментов инерции стержня J1и обруча J2: (2). Момент инерции стержня относительно оси, перпендикулярной стержню и проходящей через его центр масс, определяется по форму- ле . В данном случае т=3т1 и  Момент инерции обруча найдем, восполь- зовавшись теоремой Штейнера , где J — момент инерции относительно про- извольной оси; J0 — момент инерции отно- сительно оси, проходящей через центр масс параллельно заданной оси; а — расстояние между указанными осями. Применив эту фор- мулу к обручу, получим  Подставив выражения J1 и J2 в формулу (2), найдем момент инерции маятника относительно оси вращения:  Расстояние lС от оси маятника до его центра масс равно   Подставив в формулу (1) выражения J, lс и массы маятника , найдем период его колебаний:  После вычисления по этой формуле получим T=2,17 с. Пример 5.Складываются два колебания одинакового направле- ния, выражаемых уравнениями ; х2= = , где А1=1см, A2=2 см, с, с, ω = = . 1. Определить начальные фазы φ1 и φ 2 составляющих коле- баний. 2. Найти амплитуду А и начальную фазу φ результирующего колебания. Написать уравнение результирующего колебания. Решение. 1. Уравнение гармонического колебания имеет вид (1) Преобразуем уравнения, заданные в условии задачи, к такому же виду: (2) Из сравнения выражений (2) с равенством (1) находим начальные фазы первого и второго колебаний: рад и рад. 2. Для определения амплитуды А результирующего колебания удобно воспользоваться векторной диаграммой, представленной на рис.6.4. Согласно теореме косинусов, получим (3) где — разность фаз составляющих колебаний. Так как , то, подставляя найденные значения φ2 и φ1 получим рад. Подставим значения А1, А2и в формулу (3) и произведем вычисления: A=2,65 см. Тангенс начальной фазы φ результирующего колебания опреде- лим непосредственно из рис. 6.4: , отку- да начальная фаза  Подставим значения А1, А2, φ 1, φ 2 и произведем вычисления: = рад. Так как угловые частоты складываемых колебаний одинаковы, то результирующее колебание будет иметь ту же частоту ω. Это позволяет написать уравнение результирующего колебания в виде , где A=2,65 см, , рад. Пример 6.Материальная точка участвует одновременно в двух взаимно перпендикулярных гармонических колебаниях, уравнения которых (1). (2) где a1=1 см, A2=2 см, . Найти уравнение траектории точ- ки. Построить траекторию с соблюдением масштаба и указать направление движения точки. Решение. Чтобы найти уравнение траектории точки, исключим время t из заданных уравнений (1) и (2). Для этого восполь- зуемся формулой . В данном случае , поэтому  Так как согласно формуле (1) , то уравнение траекто- рии (3) Полученное выражение представляет собой уравнение параболы, ось которой совпадает с осью Ох. Из уравнений (1) и (2) следует, что смещение точки по осям координат ограничено и заключено в пределах от —1 до +1 см по оси Ох и от —2 до +2 см по оси Оу. Для построения траектории найдем по уравнению (3) значения у, соответствующие ряду значений х, удовлетворяющих условию см, и составим таблицу: X , СМ | -1 | —0,75 | —0,5 | | +0,5 | + 1 | у, см | | ±0,707 | ±1 | ±1,41 | ±1,73 | ±2 | Начертив координатные оси и выбрав масштаб, нанесем на плоскость хОу найденные точки. Соединив их плавной кривой, получим траекторию точки, совершающей колебания в соответствии с уравнениями движения (1) и (2) (рис. 6.5). Для того чтобы указать направление движения точки, проследим за тем, как изменяется ее положение с течением времени. В начальный момент t=0 координаты точки равны x(0)=1 см и y(0)=2 см. В последующий момент времени, например при t1=l с, координаты точек изменятся и станут равными х (1)= —1 см, y(t)=0. Зная положения точек в начальный и последующий (близкий) моменты времени, можно указать направление движения точки по траектории. На рис. 6.5 это направление движения указано стрелкой (от точки А к началу координат). После того как в момент t2 = 2 с колеблющаяся точка достигнет точки D, она будет двигаться в обратном направлении. Задачи Кинематика гармонических колебаний 6.1. Уравнение колебаний точки имеет вид , где ω=π с-1, τ=0,2 с. Определить период Т и начальную фазу φ колебаний. 6.2.Определить период Т, частоту v и начальную фазу φ колебаний, заданных уравнением , где ω=2,5π с-1, τ=0,4 с. 6.3.Точка совершает колебания по закону , где A=4 см. Определить начальную фазу φ, если: 1) х(0)=2 см и ; 2) х(0) = см и ; 3) х(0)=2см и ; 4) х(0)= и . Построить векторную диаграмму для момента t=0. 6.4.Точка совершает колебания .по закону , где A=4 см. Определить начальную фазу φ, если: 1) х(0)=2 см и ; 2) x(0)= см и ; 3) х(0)= см и ; 4) x(0)= см и . Построить векторную диаграмму для момента t=0. 6.5.Точка совершает колебания по закону , где A=2 см; ; φ= π/4 рад. Построить графики зависимости от времени: 1) смещения x(t); 2) скорости ; 3) ускорения  6.6.Точка совершает колебания с амплитудой A=4 см и периодом Т=2 с. Написать уравнение этих колебаний, считая, что в момент t=0 смещения x(0)=0 и . Определить фазу  для двух моментов времени: 1) когда смещение х=1см и ; 2) когда скорость = —6 см/с и x<0. 6.7.Точка равномерно движется по окружности против часовой стрелки с периодом Т=6 с. Диаметр d окружности равен 20 см. Написать уравнение движения проекции точки на ось х, проходящую через центр окружности, если в момент времени, принятый за начальный, проекция на ось х равна нулю. Найти смещение х, скорость и ускорение проекции точки в момент t=1с. 6.8.Определить максимальные значения скорости и ускорения точки, совершающей гармонические колебания с амплитудой А=3см и угловой частотой  6.9.Точка совершает колебания по закону , где А = =5 см; . Определить ускорение точки в момент времени, когда ее скорость =8 см/с. 6.10.Точка совершает гармонические колебания. Наибольшее смещение xmах точки равно 10 см, наибольшая скорость = =20 см/с. Найти угловую частоту ω колебаний и максимальное ускорение точки. 6.11.Максимальная скорость точки, совершающей гармонические колебания, равна10см/с, максимальное ускорение = = 100 см/с2. Найти угловую частоту ω колебаний, их период Т и амплитуду А. Написать уравнение колебаний, приняв начальную фазу равной нулю. 6.12.Точка совершает колебания по закону . В некоторый момент времени смещение х1точки оказалось равным 5 см. Когда фаза колебаний увеличилась вдвое, смещение х, стало равным 8 см. Найти амплитуду А колебаний. 6.13. Колебания точки происходят по закону . В некоторый момент времени смещение х точки равно 5 см, ее скорость = 20 см/с и ускорение =—80 см/с2. Найти амплитуду A, угловую частоту ω, период Т колебаний и фазу в рассматриваемый момент времени. Сложение колебаний 6.14.Два одинаково направленных гармонических колебания одного периода с амплитудами A1=10 см и A2=6 см складываются в одно колебание с амплитудой А=14 см. Найти разность фаз складываемых колебаний. 6.15.Два гармонических колебания, направленных по одной прямой и имеющих одинаковые амплитуды и периоды, складываются в одно колебание той же амплитуды. Найти разность фаз складываемых колебаний. 6.16.Определить амплитуду А и начальную фазу ф результи рующего колебания, возникающего при сложении двух колебаний одинаковых направления и периода: и  , где A1=A2=1 см; ω=π с-1; τ=0,5 с. Найти уравнение результирующего колебания. 6.17. Точка участвует в двух одинаково направленных колебаниях: и , где а1=1см; A2=2 см; ω= = 1 с-1. Определить амплитуду А результирующего колебания, его частоту v и начальную фазу φ. Найти уравнение этого движения. 6.18. Складываются два гармонических колебания одного на правления с одинаковыми периодами T1=T2=1,5 с и амплитудами А1=А2=2см. Начальные фазы колебаний и . Определить амплитуду А и начальную фазу φ результирующего колебания. Найти его уравнение и построить с соблюдением масштаба векторную диаграмму сложения амплитуд. 6.19.Складываются три гармонических колебания одного направления с одинаковыми периодами Т1=Т2=Т3=2 с и амплитудами A1=A2=A3=3 см. Начальные фазы колебаний φ1=0, φ2=π/3, φ3=2π/3. Построить векторную диаграмму сложения амплитуд. Определить из чертежа амплитуду А и начальную фазу φ результирующего колебания. Найти его уравнение. 6.20.Складываются два гармонических колебания одинаковой частоты и одинакового направления: и x2= = . Начертить векторную диаграмму для момента времени t=0. Определить аналитически амплитуду А и начальную фазу φ результирующего колебания. Отложить A и φ на векторной диаграмме. Найти уравнение результирующего колебания (в тригонометрической форме через косинус). Задачу решить для двух случаев: 1) А1=1см, φ1=π/3; A2=2 см, φ2=5π/6; 2) А1=1см, φ1=2π/3; A2=1 см, φ2=7π/6. 6.21. Два камертона звучат одновременно. Частоты ν1 и ν2 их колебаний соответственно равны 440 и 440,5 Гц. Определить период Т биений. 6.22. Складываются два взаимно перпендикулярных колебания, выражаемых уравнениями и , где а1=2 см, A2=1 см, , τ=0,5 с. Найти уравнение траектории и построить ее, показав направление движения точки. 6.23. Точка совершает одновременно два гармонических колебания, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями и , где а1=4 см, A1=8 см, , τ=1 с. Найти уравнение траектории точки и построить график ее движения. 6.24. Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениями выражаемых уравнениями: 1) и  Найти (для восьми случаев) уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: А=2 см, A1=3 см, А2=1см; φ1=π/2, φ2=π. 6.25. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, выражаемых уравнениями и , где A1=2 см, A2=1 см. Найти уравнение траектории точки и построить ее, указав направление движения. 6.26. Точка одновременно совершает два гармонических колебания, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями и , где А1= =0,5 см; A2=2 см. Найти уравнение траектории точки и построить ее, указав направление движения. 6.27. Движение точки задано уравнениями и у= = , где A1=10 см, A2=5 см, ω=2 с-1, τ=π/4 с. Найти уравнение траектории и скорости точки в момент времени t=0,5 с. 6.28. Материальная точка участвует одновременно в двух взаимно перпендикулярных колебаниях, выражаемых уравнениями и , где A1=2 см, A2=1 см. Найти уравнение траектории и построить ее. 6.29. Точка участвует одновременно в двух гармонических колебаниях, происходящих по взаимно перпендикулярным направлениям описываемых уравнениями: 1) и  Найти уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: A=2 см; A1=з см. 6.30. Точка участвует одновременно в двух взаимно перпенди- кулярных колебаниях, выражаемых уравнениями и y=A2 sin 0,5ωt, где A1=2см, A2=3 см. Найти уравнение траектории точки и построить ее, указав направление движения. 6.31.Смещение светящейся точки на экране осциллографа является результатом сложения двух взаимно перпендикулярных колебаний, которые описываются уравнениями: 1) х=А sin 3ωt и у=A sin 2ωt; 2) х=А sin 3ωt и y=A cos 2ωt; 3) х=А sin 3ωt и y=A cos ωt. Применяя графический метод сложения и соблюдая масштаб, построить траекторию светящейся точки на экране. Принять А=4 см. Динамика гармонических колебаний. Маятники 6.32.Материальная точка массой т=50 г совершает колебания, уравнение которых имеет вид х=А cos ωt, где А = 10 см, ω=5 с-1. Найти силу F, действующую на точку, в двух случаях: 1) в момент, когда фаза ωt=π/3; 2) в положении наибольшего смещения точки. 6.33.Колебания материальной точки массой т=0,1 г происходят согласно уравнению х=A cos ωt, где A=5 см; ω=20 с-1. Определить максимальные значения возвращающей силы Fmax и кинетической энергии Тmах. 6.34.Найти возвращающую силу F в момент t=1 с и полную энергию Е материальной точки, совершающей колебания по закону х=А cos ωt, где А = 20 см; ω=2π/3 с-1. Масса т материальной точки равна 10 г. 6.35.Колебания материальной точки происходят согласно уравнению х=A cos ωt, где A=8 см, ω=π/6 с-1. В момент, когда возвращающая сила F в первый раз достигла значения —5 мН, потенциальная энергия П точки стала равной 100 мкДж. Найти этот момент времени t и соответствующую ему фазу ωt. 6.36.Грузик массой m=250 г, подвешенный к пружине, колеблется по вертикали с периодом Т=1 с. Определить жесткость k пружины. 6.37. К спиральной пружине подвесили грузик, в результате чего пружина растянулась на х=9 см. Каков будет период Т колебаний грузика, если его немного оттянуть вниз и затем отпустить? 6.38.Гиря, подвешенная к пружине, колеблется по вертикали с амплитудой A =4 см. Определить полную энергию Е колебаний гири, если жесткость k пружины равна 1 кН/м. 6.39.Найти отношение длин двух математических маятников, если отношение периодов их колебаний равно 1,5. 6.40. Математический маятник длиной l=1м установлен в лифте. Лифт поднимается с ускорением а=2,5 м/с2. Определить период Т колебаний маятника. 6.41. На концах тонкого стержня длиной l=30 см укреплены одинаковые грузики по одному на каждом конце. Стержень с грузиками колеблется около горизонтальной оси, проходящей через точку, удаленную на d=10 см от одного из концов стержня. Определить приведенную длину L и период Т колебаний такого физического маятника. Массой стержня пренебречь. 6.42. На стержне длиной l=30 см укреплены два одинаковых грузика: один — в середине стержня, другой — на одном из его концов. Стержень с грузиком колеблется около горизонтальной оси, проходящей через свободный конец стержня. Определить приведенную длину L и период Т колебаний такой системы. Массой стержня пренебречь. 6.43. Система из трех грузов, соединенных стержнями длиной l=30 см (рис. 6.6), колеблется относительно горизонтальной оси, проходящей через точку О перпендикулярно плоскости чертежа. Найти период Т колебаний системы. Массами стержней пренебречь, грузы рассматривать как материальные точки. 6.44. Тонкий обруч, повешенный на гвоздь, вбитый горизонтально в стену, колеблется в плоскости, параллельной стене. Радиус R обруча равен 30 см. Вычислить период Т колебаний обруча. 6.45. Однородный диск радиусом R=30 см колеблется около горизонтальной оси, проходящей через одну из образующих цилиндрической поверхности диска. Каков период Т его колебаний? 6.46. Диск радиусом R=24см колеблется около горизонтальной оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска. Определить приведенную длину L и период Т колебаний такого маятника. 6.47. Из тонкого однородного диска радиусом R=20 см вырезана часть, имеющая вид круга радиусом r=10см, так, как это показано на рис. 6.7. Оставшаяся часть диска колеблется относительно горизонтальной оси О, совпадающей с одной из образующих цилиндрической поверхности диска. Найти период Т колебаний такого маятника. 6.48. Математический маятник длиной l1=40 см и физический маятник в виде тонкого прямого стержня длиной l2=60 см синхронно колеблются около одной и той же горизонтальной оси. Определить расстояние а центра масс стержня от оси колебаний. 6.49.Физический маятник в виде тонкого прямого стержня длиной l=120 см колеблется около горизонтальной оси, проходящей перпендикулярно стержню через точку, удаленную на некоторое расстояние а от центра масс стержня. При каком значении а период Т колебаний имеет наименьшее значение? 6.50. Физический маятник представляет собой тонкий однородный стержень массой т с укрепленным на нем маленьким шариком массой т. Маятник совершает колебания около горизонтальной оси, проходящей через точку О на стержне. Определить период Т гармонических колебаний маятника для случаев а, б, в, г, изображенных на рис. 6.8. Длина l стержня равна 1 м. Шарик рассматривать как материальную точку. 6.51.Физический маятник представляет собой тонкий однородный стержень массой т с укрепленными на нем двумя маленькими шариками массами т и 2т. Маятник совершает колебания около горизонтальной оси, проходящей через точку О на стержне. Определить частоту ν гармонических колебаний маятника для случаев а, б, в, г, изображенных на рис. 6.9. Длина l стержня равна 1 м. Шарики рассматривать как материальные точки. 6.52.Тело массой т=4 кг, закрепленное на горизонтальной оси, совершало колебания с периодом T1=0,8 с. Когда на эту ось был насажен диск так, что его ось совпала с осью колебаний тела, период T2 колебаний стал равным 1,2 с. Радиус R диска равен 20 см, масса его равна массе тела. Найти момент инерции J тела относительно оси колебаний. 6.53.Ареометр массой т=50 г, имеющий трубку диаметром d= 1 см, плавает в воде. Ареометр немного погрузили в воду и затем предоставили самому себе, в результате чего он стал совершать гармонические колебания. Найти период Т этих колебаний. 6.54. В открытую с обоих концов U-образную трубку с площадью поперечного сечения S=0,4 см2 быстро вливают ртуть массой т=200 г. Определить период Т колебаний ртути в трубке. 6.55.Набухшее бревно, сечение которого постоянно по всей длине, погрузилось вертикально в воду так, что над водой находится лишь малая (по сравнению с длиной) его часть. Период Т колебаний бревна равен 5 с. Определить длину l бревна. Затухающие колебания 6.56.Амплитуда затухающих колебаний маятника за время t1=5 мин уменьшилась в два раза. За какое время t2, считая от начального момента, амплитуда уменьшится в восемь раз? 6.57.За время t=8 мин амплитуда затухающих колебаний маятника уменьшилась в три раза. Определить коэффициент затухания δ. 6.58. Амплитуда колебаний маятника длиной l=1м за время t=10 мин уменьшилась в два раза. Определить логарифмический декремент колебаний Θ. 6.59.Логарифмический декремент колебаний Θ маятника равен 0,003. Определить число N полных колебаний, которые должен сделать маятник, чтобы амплитуда уменьшилась в два раза. 6.60.Гиря массой т=500 г подвешена к спиральной пружине жесткостью k=20 Н/м и совершает упругие колебания в некоторой среде. Логарифмический декремент колебаний Θ=0,004. Определить число N полных колебаний, которые должна совершить гиря, чтобы амплитуда колебаний уменьшилась в n=2 раза. За какое время t произойдет это уменьшение? 6.61.Тело массой т=5 г совершает затухающие колебания. В течение времени t=50с тело потеряло 60 % своей энергии. Определить коэффициент сопротивления b. 6.62.Определить период Т затухающих колебаний, если период Т0 собственных колебаний системы равен 1 с и логарифмический декремент колебаний Θ=0,628. 6.63. Найти число N полных колебаний системы, в течение которых энергия системы уменьшилась в n=2 раза. Логарифмический декремент колебаний Θ=0,01. 6.64.Тело массой т=1 кг находится в вязкой среде с коэффициентом сопротивления b=0,05 кг/с. С помощью двух одинаковых пружин жесткостью k=50 Н/м каждое тело удерживается в положении равновесия, пружины при этом не деформированы (рис. 6.10). Тело сместили от положения равновесия и отпустили. Определить: 1) коэффициент затухания δ; 2) частоту ν колебаний; 3) логарифмический декремент колебаний Θ; 4) число N колебаний, по прошествии которых амплитуда уменьшится в е раз. Вынужденные колебания. Резонанс 6.65.Под действием силы тяжести электродвигателя консольная балка, на которой он установлен, прогнулась на h=1 мм. При какой частоте вращения п якоря электродвигателя может возникнуть опасность резонанса? 6.66. Вагон массой т=80 т имеет четыре рессоры. Жесткость k пружин каждой рессоры равна 500 кН/м. При какой скорости υвагон начнет сильно раскачиваться вследствие толчков на стыках рельс, если длина l рельса равна 12,8 м? 6.67.Колебательная система совершает затухающие колебания с частотой ν=1000 Гц. Определить частоту ν0 собственных колебаний, если резонансная частота νpeз=998 Гц. 6.68.Определить, на сколько резонансная частота отличается от частоты ν0=l кГц собственных колебаний системы, характеризуемой коэффициентом затухания δ=400 с-1. 6.69.Определить логарифмический декремент колебаний Θ колебательной системы, для которой резонанс наблюдается при частоте, меньшей собственной частоты ν0=10 кГц на Δν=2 Гц. 6.70.Период Т0 собственных колебаний пружинного маятника равен 0,55 с. В вязкой среде период Т того же маятника стал равным 0,56 с. Определить резонансную частоту ν peз колебаний. 6.71.Пружинный маятник (жесткость k пружины равна 10 Н/м, масса т груза равна 100 г) совершает вынужденные колебания в вязкой среде с коэффициентом сопротивления r=2·10-2 кг/с. Определить коэффициент затухания δ и резонансную амплитуду Aрез, если амплитудное значение вынуждающей силы F0=10 мН. 6.72.Тело совершает вынужденные колебания в среде с коэффициентом сопротивления r=1г/с. Считая затухание малым, определить амплитудное значение вынуждающей силы, если резонансная амплитуда Aрез=0,5 см и частота ν 0 собственных колебаний равна 10 Гц. 6.73.Амплитуды вынужденных гармонических колебаний при частоте ν1=400 Гц и ν2=600 Гц равны между собой. Определить резонансную частоту νpeз. Затуханием пренебречь. 6.74. К спиральной пружине жесткостью k=10Н/м подвесили грузик массой т=10 г и погрузили всю систему в вязкую среду. Приняв коэффициент сопротивления b равным 0,1 кг/с, определить: 1) частоту ν0 собственных колебаний; 2) резонансную частоту νpeз; 3) резонансную амплитуду Aрез, если вынуждающая сила изменяется по гармоническому закону и ее амплитудное значение F0= =0,02 Н; 4) отношение резонансной амплитуды к статическому смещению под действием силы F0. 6.75.Во сколько раз амплитуда вынужденных колебаний будет меньше резонансной амплитуды, если частота изменения вынуждающей силы будет больше резонансной частоты: 1) на 10 %? 2) в два раза? Коэффициент затухания δ в обоих случаях принять равным 0,1 ω0 (ω 0 — угловая частота собственных колебаний). |