МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Логарифмическая функция — это функция вида





где a>0, a≠1.

1) Область определения логарифмической функции — множество положительных чисел x>0:

2) Область значений логарифмической функции — множество всех действительных чисел: y∈R

3) Логарифмическая функция не имеет наибольшего и наименьшего значений (не ограничена).

4) Функция не является ни чётной, ни нечётной.

5) Нуль логарифмической функции (y=0): x=1.

То есть логарифмическая функция пересекает ось Ox в точке (1;0).

Ось Oy не пересекает.

6) При a>1

— логарифмическая функция возрастает на всей области определения.

Промежутки знакопостоянства:

— функция принимает положительные значения при x>1:

— функция принимает отрицательные значения при 0<x<1:

 

 

При 0<a<1

— логарифмическая функция убывает на всей области определения.

Промежутки знакопостоянства:

— функция принимает положительные значения при 0<x<1:

— функция принимает отрицательные значения при x>1:

 

 

7) Для логарифмической функции выполняются соотношения:

Для

График логарифмической функции называют логарифмической кривой.

Ось Oy для графика логарифмической функции является вертикальной асимптотой (то есть, при стремлении x к нулю график приближается к оси Oy (но никогда её не пересечёт)).

 

Логари́фм числа по основанию (от греч. λόγος — «слово», «отношение» и ἀριθμός — «число») определяется[ как показатель степени, в которую надо возвести основание , чтобы получить число . Обозначение: , произносится: «логарифм по основанию ».

Из определения следует, что нахождение равносильно решению уравнения . Например, , потому что .

Вычисление логарифма называется логарифмированием. Числа чаще всего вещественные, но существует также теория комплексных логарифмов[].Логарифмы обладают уникальными свойствами, которые определили их широкое использование для существенного упрощения трудоёмких вычислений[3]. При переходе «в мир логарифмов» умножение заменяется на значительно более простое сложение, деление — на вычитание, а возведение в степень и извлечение корня преобразуются соответственно в умножение и деление на показатель степени. Лаплас говорил, что изобретение логарифмов, «сократив труд астронома, удвоило его жизнь»[4].

Определение логарифмов и таблицу их значений (для тригонометрических функций) впервые опубликовал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, расширенные и уточнённые другими математиками, повсеместно использовались для научных и инженерных расчётов более трёх веков, пока не появились электронные калькуляторы и компьютеры. Со временем выяснилось, что логарифмическая функция незаменима и во многих других областях человеческой деятельности: решениедифференциальных уравнений, классификация значений величин (например, частота и интенсивность звука), аппроксимация различных зависимостей, теория информации, теория вероятностей и т. д.. Эта функция относится к числу элементарных, она обратна по отношению к показательной функции. Чаще всего используются вещественные логарифмы с основаниями (двоичный), (натуральный логарифм) и (десятичный).

 

Логарифм вещественного числа по определению есть решение уравнения . Случай интереса не представляет, поскольку тогда при это уравнение не имеет решения, а при любое число является решением; в обоих случаях логарифм не определён. Аналогично заключаем, что логарифм не существует при нулевом или отрицательном ; кроме того, значение показательной функции всегда положительно, поэтому следует исключить также случай отрицательного . Окончательно получаем[5]:



Вещественный логарифм имеет смысл при


Как известно, показательная функция (при выполнении указанных условий для ) существует, монотонна и каждое значение принимает только один раз, причём диапазон её значений содержит все положительные вещественные числа[6]. Отсюда следует, что значение вещественного логарифма положительного числа всегда существует и определено однозначно.

Наиболее широкое применение нашли следующие виды логарифмов:

· Натуральные: или , основание: число Эйлера ( );

· Десятичные: или , основание: число ;

· Двоичные: или , основание: . Они применяются, например, в теории информации, информатике, во многих разделах дискретной математики.

Свойства[править | править вики-текст]

Основное логарифмическое тождество[править | править вики-текст]

Из определения логарифма следует основное логарифмическое тождество[7]:

Следствие: из равенства двух вещественных логарифмов следует равенство логарифмируемых выражений. В самом деле, если , то , откуда, согласно основному тождеству: .

Логарифмы единицы и числа, равного основанию[править | править вики-текст]

Два равенства, очевидных из определения логарифма:

Логарифм произведения, частного от деления, степени и корня[править | править вики-текст]

Приведём сводку формул в предположении, что все значения положительны[8]:

  Формула Пример
Произведение
Частное от деления
Степень
Корень

Существует очевидное обобщение приведённых формул на случай, когда допускаются отрицательные значения переменных, например:

Формулы для логарифма произведения без труда обобщаются на произвольное количество сомножителей:

Вышеописанные свойства объясняют, почему применение логарифмов (до изобретения калькуляторов) существенно облегчало вычисления. Например, умножение многозначных чисел с помощью логарифмических таблиц[⇨] производилось по следующему алгоритму:

1. найти в таблицах логарифмы чисел ;

2. сложить эти логарифмы, получая (согласно первому свойству) логарифм произведения ;

3. по логарифму произведения найти в таблицах само произведение.

Деление, которое без помощи логарифмов намного более трудоёмко, чем умножение, выполнялось по тому же алгоритму, лишь с заменой сложения логарифмов на вычитание. Аналогично упрощались возведение в степень и извлечение корня.

Замена основания логарифма[править | править вики-текст]

Логарифм по основанию можно преобразовать[5] в логарифм по другому основанию :

Следствие (при ) — перестановка основания и логарифмируемого выражения:

См. пример такой перестановки в разделе десятичный логарифм.

Коэффициент в формуле замены основания называется модулем перехода от одного основания к другому[9].

Неравенства[править | править вики-текст]

Значение логарифма положительно тогда и только тогда, когда числа лежат по одну сторону от единицы (то есть либо оба больше единицы, либо оба меньше). Если же лежат по разные стороны от единицы, то логарифм отрицателен[10].

Любое неравенство для положительных чисел можно логарифмировать. При этом, если основание логарифма больше единицы, то знак неравенства сохраняется, а если основание меньше единицы, знак неравенства меняется на противоположный[10].

Другие тождества и свойства[править | править вики-текст]

Если выражения для основания логарифма и для логарифмируемого выражения содержат возведение в степень, для упрощения можно применить следующее тождество:

Это тождество сразу получается, если в логарифме слева заменить основание на по вышеприведённой формуле замены основания. Следствия:

Ещё одно полезное тождество:

Для его доказательства заметим, что логарифмы левой и правой частей по основанию совпадают (равны ), а тогда, согласно следствию из основного логарифмического тождества, левая и правая части тождественно равны.

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.