МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

История развития представлений о Большом Взрыве





 

1916 – вышла в свет работа физика Альберта Эйнштейна «Основы общей теории относительности», в которой он завершил создание релятивистской теории гравитации.

1917 – Эйнштейн на основе своих уравнений поля развил представление о пространстве с постоянной во времени и пространстве кривизной (модель Вселенной Эйнштейна, знаменующая зарождение космологии), ввёл космологическую постоянную Λ. (Впоследствии Эйнштейн назвал введение космологической постоянной одной из самых больших своих ошибок; уже в наше время выяснилось, что Λ-член играет важнейшую роль в эволюции Вселенной). В. де Ситтер выдвинул космологическую модель Вселенной (модель де Ситтера) в работе «Об эйнштейновской теории гравитации и её астрономических следствиях».

1922 – советский математик и геофизик А. А. Фридман нашёл нестационарные решения гравитационного уравнения Эйнштейна и предсказал расширение Вселенной (нестационарная космологическая модель, известная как решение Фридмана). Если экстраполировать эту ситуацию в прошлое, то придётся заключить, что в самом начале вся материя Вселенной была сосредоточена в компактной области, из которой и начала свой разлёт. Поскольку во Вселенной очень часто происходят процессы взрывного характера, то у Фридмана возникло предположение, что и в самом начале её развития также лежит взрывной процесс — Большой взрыв.

1923 – немецкий математик Г. Вейль отметил, что если в модель де Ситтера, которая соответствовала пустой Вселенной, поместить вещество, она должна расширяться. О нестатичности Вселенной де Ситтера говорилось и в книге А. Эддингтона, опубликованной в том же году.

1924 – К. Вирц обнаружил слабую корреляцию между угловыми диаметрами и скоростями удаления галактик и предположил, что она может быть связана с космологической моделью де Ситтера, согласно которой скорость удаления отдалённых объектов должна возрастать с их расстоянием.

1925 – К. Э. Лундмарк и затем Штремберг, повторившие работу Вирца, не получили убедительных результатов, а Штремберг даже заявил, что «не существует зависимости лучевых скоростей от расстояния от Солнца». Однако было лишь ясно, что ни диаметр, ни блеск галактик не могут считаться надёжными критериями их расстояния. О расширении непустой Вселенной говорилось и в первой космологической работе бельгийского теоретика Жоржа Леметра, опубликованной в этом же году.

1927 – опубликована статья Леметра «Однородная Вселенная постоянной массы и возрастающего радиуса, объясняющая радиальные скорости внегалактических туманностей». Коэффициент пропорциональности между скоростью и расстоянием, полученный Леметром, был близок к найденному Э. Хабблом в 1929. Леметр был первым, кто чётко заявил, что объекты, населяющие расширяющуюся Вселенную, распределение и скорости движения которых и должны быть предметом космологии — это не звёзды, а гигантские звёздные системы, галактики. Леметр опирался на результаты Хаббла, с которыми он познакомился, будучи в США в 1926 г. на его докладе.

1929 – 17 января в Труды Национальной академии наук США поступили статьи Хьюмасона о лучевой скорости NGC 7619 и Хаббла, называвшаяся «Связь между расстоянием и лучевой скоростью внегалактических туманностей». Сопоставление этих расстояний с лучевыми скоростями показало чёткую линейную зависимость скорости от расстояния, по праву называющуюся теперь законом Хаббла.



1948 – выходит работа Г. А. Гамова о «горячей вселенной», построенная на теории расширяющейся вселенной Фридмана. По Фридману, вначале был взрыв. Он произошёл одновременно и повсюду во Вселенной, заполнив пространство очень плотным веществом, из которого через миллиарды лет образовались наблюдаемые тела Вселенной – Солнце, звёзды, галактики и планеты, в том числе Земля и всё что на ней. Гамов добавил к этому, что первичное вещество мира было не только очень плотным, но и очень горячим. Идея Гамова состояла в том, что в горячем и плотном веществе ранней Вселенной происходили ядерные реакции, и в этом ядерном котле за несколько минут были синтезированы лёгкие химические элементы. Самым эффектным результатом этой теории стало предсказание космического фона излучения. Электромагнитное излучение должно было, по законам термодинамики, существовать вместе с горячим веществом в «горячую» эпоху ранней Вселенной. Оно не исчезает при общем расширении мира и сохраняется — только сильно охлаждённым — и до сих пор. Гамов и его сотрудники смогли ориентировочно оценить, какова должна быть сегодняшняя температура этого остаточного излучения. У них получалось, что это очень низкая температура, близкая к абсолютному нулю. С учётом возможных неопределённостей, неизбежных при весьма ненадёжных астрономических данных об общих параметрах Вселенной как целого и скудных сведениях о ядерных константах, предсказанная температура должна лежать в пределах от 1 до 10 К.

1955 –Советский радиоастроном Тигран Шмаонов экспериментально обнаружил шумовое СВЧ-излучение с температурой около 3K.

1964 – американские радиоастрономы А. Пензиас и Р. Вилсон открыли космический фон излучения и измерили его температуру. Она оказалась равной именно 3 К. Это было самое крупное открытие в космологии со времён открытия Хабблом в 1929 году общего расширения Вселенной. Теория Гамова была полностью подтверждена. В настоящее время это излучение носит название реликтового; термин ввёл советский астрофизик И. С. Шкловский.

2003 –спутник WMAP с высокой степенью точности измеряет анизотропию реликтового излучения. Вместе с данными предшествующих измерений (COBE, Космический телескоп Хаббла и др.), полученная информация подтвердила космологическую модель ΛCDM и инфляционную теорию. С высокой точностью был установлен возраст Вселенной и распределение по массам различных видов материи (барионная материя – 4 %, тёмная материя – 23 %, тёмная энергия – 73 %)[2]. 2009 – запущен спутник Планк, который в настоящее время измеряет анизотропию реликтового излучения с ещё более высокой точностью.

 

Заключение

 

Кроме теории расширяющейся Вселенной имелась также теория, что Вселенная стационарна, то есть не эволюционирует и не имеет ни начала, ни конца во времени. Часть сторонников такой точки зрения отвергают расширение Вселенной, а красное смещение объясняют гипотезой о «старении» света. Однако, как выяснилось, эта гипотеза противоречит наблюдениям. Другой вариант, не отрицающий расширения Вселенной, представлен теорией стационарной Вселенной Ф. Хойла. Она также плохо согласуется с наблюдениями.

В официальной науке СССР теория Большого взрыва сначала была воспринята с настороженностью. Хотя теория Большого взрыва и была, в конце концов, воспринята советскими учеными и философами, тем не менее, до самого распада СССР в философских словарях был закреплен постулат о бесконечности и вечности материи.

Есть ряд вопросов, на которые теория Большого взрыва ответить пока не может, однако основные её положения обоснованы надёжными экспериментальными данными, а современный уровень теоретической физики позволяет вполне достоверно описать эволюцию такой системы во времени.

Религии также принимают данную теорию. 22 ноября 1951 года Папа Римский Пий XII объявил, что теория Большого взрыва не противоречит католическим представлениям о создании мира. В православии также существует положительное отношение к этой теории. Консервативные протестантские христианские конфессии также приветствовали теорию Большого Взрыва. Некоторые мусульмане стали указывать на то, что в Коране есть упоминания Большого взрыва. Согласно индуистскому учению, у мира нет начала и конца, он развивается циклично, однако в «Энциклопедии индуизма» говорится, что теория напоминает, что всё произошло от Брахмана, который «меньше атома, но больше самого громадного».

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

 

1. Гусейханов, М. К., Раджабов О. Р. Концепции современного естествознания: учебник / М. К. Гусейханов, О.Р. Раджабов. – Изд.: Инфра–М, 2014. – 272 с.

2. Карпенков, С.Х. Концепции современного естествознания: учебник для вузов / С.Х. Карпенков, – 6-е изд. перераб. и доп. – М.: ИНФРА-М, 2005. –285 с.

3. Канке, В.А. Концепции современного естествознания: учебник / В.А. Канке, Л.В. Лукашина. – М.: Юнити-Дана, 2014. – 338 с.

4. Лебедев, С.А. Концепции современного естествознания: учебник для бакалавров / С.А. Лебедев. – М.: Юрайт, 2013. – 368 с.

5. Михайлов, Л.А. Концепции современного естествознания: учебник для вузов / Л.А. Михайлов, Т.А. Беспамятных, Ю. К. Баленко. – Изд.: Питер, 2012. – 336 с.

6. Катаева, Т.А. Рождение Вселенной / Т.А. Катаева// В мире науки. – 2009. – № 7. С. 18 – 24.






©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.