МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Способы реализации цифровых фильтров





Применения

Цифровые фильтры на сегодняшний день применяются практически везде, где требуется обработка сигналов, в частности в спектральном анализе, обработке изображений, обработке видео, обработке речи и звука и многих других приложениях.

Характеристика цифровых фильтров

Линейный стационарный цифровой фильтр характеризуется передаточной функцией. Передаточная функция может описать, как фильтр будет реагировать на входной сигнал. Таким образом, проектирование фильтра состоит из постановки задачи (например, фильтр восьмого порядка, фильтр нижних частот с конкретной частотой среза), а затем производится расчет передаточной функции, которая определяет характеристики фильтра .


Передаточная функция фильтра имеет вид:

где порядок фильтра — большее N или M. В данном случае это формула БИХ-фильтра. Если знаменатель равен единице, то получаем формулу КИХ-фильтра (без обратной связи).

Преимущества и недостатки

Преимуществами цифровых фильтров перед аналоговыми являются:

· Высокая точность (точность аналоговых фильтров ограничена допусками на элементы).

· Стабильность (в отличие от аналогового фильтра передаточная функция не зависит от дрейфа характеристик элементов).

· Гибкость настройки, лёгкость изменения.

· Компактность — аналоговый фильтр на очень низкую частоту (доли герца, например) потребовал бы чрезвычайно громоздких конденсаторов или индуктивностей.

Недостатки

Недостатками цифровых фильтров по сравнению с аналоговыми являются:

· Трудность работы с высокочастотными сигналами. Полоса частот ограничена частотой Найквиста, равной половине частоты дискретизации сигнала. Поэтому для высокочастотных сигналов применяют аналоговые фильтры, либо, если на высоких частотах нет полезного сигнала, сначала подавляют высокочастотные составляющие с помощью аналогового фильтра, затем обрабатывают сигнал цифровым фильтром.

· Трудность работы в реальном времени — вычисления должны быть завершены в течение периода дискретизации.

· Для большой точности и высокой скорости обработки сигналов требуется не только мощный процессор, но и дополнительное, возможно дорогостоящее, аппаратное обеспечение в виде высокоточных и быстрых ЦАП и АЦП.

Виды цифровых фильтров

КИХ-фильтры

Основная статья: Фильтр с конечной импульсной характеристикой

Фильтр с конечной импульсной характеристикой (нерекурсивный фильтр, КИХ-фильтр) — один из видов электронных фильтров, характерной особенностью которого является ограниченность по времени его импульсной характеристики (с какого-то момента времени она становится точно равной нулю). Знаменатель передаточной функции такого фильтра — некая константа.

БИХ-фильтры

Основная статья: Фильтр с бесконечной импульсной характеристикой

Фильтр с бесконечной импульсной характеристикой (рекурсивный фильтр, БИХ-фильтр) — электронный фильтр, использующий один или более своих выходов в качестве входа, то есть образует обратную связь.Основным свойством таких фильтров является то, что их импульсная переходная характеристика имеет бесконечную длину во временной области, а передаточная функция имеет дробно-рациональный вид. Такие фильтры могут быть как аналоговыми так и цифровыми.



Способы реализации цифровых фильтров

Различают два вида реализации цифрового фильтра: аппаратный и программный. Аппаратные цифровые фильтры реализуются на элементах интегральных схем, тогда как программные реализуются с помощью программ, выполняемых ПЛИС,процессором или микроконтроллером. Преимуществом программных перед аппаратным является лёгкость воплощения, а также настройки и изменений, а также то, что в себестоимость такого фильтра входит только труд программиста. Недостаток — низкая скорость, зависящая от быстродействия процессора, а также трудная реализуемость цифровых фильтров высокого порядка.

 

Медианная фильтрация

Все линейные алгоритмы фильтрации приводят к сглаживанию резких перепадов яркости изображений, прошедших обработку. Этот недостаток, особенно существенный, если потребителем информации является человек, принципиально не может быть исключен в рамках линейной обработки. Дело в том, что линейные процедуры являются оптимальными при гауссовском распределении сигналов, помех и наблюдаемых данных. Реальные изображения, строго говоря, не подчиняются данному распределению вероятностей. Причем, одна из основных причин этого состоит в наличии у изображений разнообразных границ, перепадов яркости, переходов от одной текстуры к другой и т. п. Поддаваясь локальному гауссовскому описанию в пределах ограниченных участков, многие реальные изображения в этой связи плохо представляются как глобально гауссовские объекты. Именно это и служит причиной плохой передачи границ при линейной фильтрации.

Вторая особенность линейной фильтрации - ее оптимальность, как только что упоминалось, при гауссовском характере помех. Обычно этому условию отвечают шумовые помехи на изображениях, поэтому при их подавлении линейные алгоритмы имеют высокие показатели. Однако, часто приходится иметь дело с изображениями, искаженными помехами других типов. Одной из них является импульсная помеха. При ее воздействии на изображении наблюдаются белые или (и) черные точки, хаотически разбросанные по кадру. Применение линейной фильтрации в этом случае неэффективно - каждый из входных импульсов (по сути - дельта-функция) дает отклик в виде импульсной характеристики фильтра, а их совокупность способствует распространению помехи на всю площадь кадра.

Удачным решением перечисленных проблем является применение медианной фильтрации, предложенной Дж. Тьюки в 1971 г. для анализа экономических процессов. Наиболее полное исследование медианной фильтрации применительно к обработке изображений представлено в сборнике [3.9]. Отметим, что медианная фильтрация представляет собой эвристический метод обработки, ее алгоритм не является математическим решением строго сформулированной задачи. Поэтому исследователями уделяется большое внимание анализу эффективности обработки изображений на ее основе и сопоставлению с другими методами.

При применении медианного фильтра (МФ) происходит последовательная обработка каждой точки кадра, в результате чего образуется последовательность оценок. В идейном отношении обработка в различных точках независима (этим МФ похож на масочный фильтр), но в целях ее ускорения целесообразно алгоритмически на каждом шаге использовать ранее выполненные вычисления.

При медианной фильтрации используется двумерное окно (апертура фильтра), обычно имеющее центральную симметрию, при этом его центр располагается в текущей точке фильтрации. На рис. 3.10 показаны два примера наиболее часто применяемых вариантов окон в виде креста и в виде квадрата. Размеры апертуры принадлежат к числу параметров, оптимизируемых в процессе анализа эффективности алгоритма. Отсчеты изображения, оказавшиеся в пределах окна, образуют рабочую выборку текущего шага.

а) б)
Рис. 3.10. Примеры окон при медианной фильтрации

Двумерный характер окна позволяет выполнять, по существу, двумерную фильтрацию, поскольку для образования оценки привлекаются данные как из текущих строки и столбца, так и из соседних. Обозначим рабочую выборку в виде одномерного массива ; число его элементов равняется размеру окна, а их расположение произвольно. Обычно применяют окна с нечетным числом точек (это автоматически обеспечивается при центральной симметрии апертуры и при вхождении самой центральной точки в ее состав). Если упорядочить последовательность по возрастанию, то ее медианой будет тот элемент выборки, который занимает центральное положение в этой упорядоченной последовательности. Полученное таким образом число и является продуктом фильтрации для текущей точки кадра. Понятно, что результат такой обработки в самом деле не зависит от того, в какой последовательности представлены элементы изображения в рабочей выборке . Введем формальное обозначение описанной процедуры в виде:

. (3.48)

Рассмотрим пример. Предположим, что выборка имеет вид: , а элемент 250, расположенный в ее центре, соответствует текущей точке фильтрации (рис. 3.10). Большое значение яркости в этой точке кадра может быть результатом воздействия импульсной (точечной) помехи. Упорядоченная по возрастанию выборка имеет при этом вид {45,55,75,99,104,110,136,158,250}, следовательно, в соответствии с процедурой (3.48), получаем . Видим, что влияние “соседей” на результат фильтрации в текущей точке привело к “игнорированию” импульсного выброса яркости, что следует рассматривать как эффект фильтрации. Если импульсная помеха не является точечной, а покрывает некоторую локальную область, то она также может быть подавлена. Это произойдет, если размер этой локальной области будет меньше, чем половина размера апертуры МФ. Поэтому для подавления импульсных помех, поражающих локальные участки изображения, следует увеличивать размеры апертуры МФ.

Из (3.48) следует, что действие МФ состоит в “игнорировании” экстремальных значений входной выборки - как положительных, так и отрицательных выбросов. Такой принцип подавления помехи может быть применен и для ослабления шума на изображении. Однако исследование подавления шума при помощи медианной фильтрации показывает, что ее эффективность при решении этой задачи ниже, чем у линейной фильтрации [3.9].

Результаты экспериментов, иллюстрирующие работу МФ, приведены на рис. 3.11. В экспериментах применялся МФ, имеющий квадратную апертуру со

стороной равной 3. В левом ряду представлены изображения, искаженные помехой, в правом - результаты их медианной фильтрации. На рис. 3.11.а и рис. 3.11.в показано исходное изображение, искаженное импульсной помехой. При ее наложении использовался датчик случайных чисел с равномерным на интервале [0, 1] законом распределения, вырабатывающий во всех точках кадра независимые случайные числа. Интенсивность помехи задавалась вероятностью ее возникновения в каждой точке. Если для случайного числа , сформированного в точке , выполнялось условие , то яркость изображения в этой точке замещалась числом 255, соответствующим максимальной яркости (уровню белого). На рис. 3.11.а действием импульсной помехи искажено 5 % ( =0.05), а на рис. 3.11.в - 10 % элементов изображения. Результаты обработки говорят о практически полном подавлении помехи в первом случае и о ее значительном ослаблении во втором.

а) б)
в) г)
д) е)
Рис. 3.11. Примеры медианной фильтрации

Рис. 3.11.д показывает изображение, искаженное независимым гауссовским шумом при отношении сигнал/шум дБ, а рис. 3.11.е - результат его фильтрации медианным фильтром. Условия данного эксперимента позволяют сравнивать его результаты с результатами рассмотренной выше линейной фильтрации. В таблице 3.1 приведены данные, дающие возможность такого сравнения. Для различных методов фильтрации в этой таблице приводятся значения относительного среднего квадрата ошибок и коэффициента ослабления шума для случая, когда отношение сигнал/шум на входе фильтра составляет -5 дБ.

Табл.3.1. Сравнение эффективности подавления шума при фильтрации изображений, дБ

  масочный фильтр с оптимальн. КИХ масочный фильтр с равномерн. КИХ двумерный рекуррентн. фильтр двумерный фильтр Винера медианный фильтр
0.309 0.395 0.29 0.186 0.539
10.2 8.0 10.9 17.0 5.86

Наибольшей эффективностью обладает двумерный фильтр Винера, уменьшающий средний квадрат ошибок в 17 раз. Медианный фильтр имеет наименьшую из всех рассмотренных фильтров эффективность, ему соответствует =5.86. Тем не менее, это число свидетельствует о том, что и при его помощи удается значительно снизить уровень шума на изображении.

Вместе с тем, как говорилось выше, и что демонстрирует рис. 3.11.е, медианная фильтрация в меньшей степени сглаживает границы изображения, чем любая линейная фильтрация. Механизм этого явления очень прост и заключается в следующем. Предположим, что апертура фильтра находится вблизи границы, разделяющей светлый и темный участки изображения, при этом ее центр располагается в области темного участка. Тогда, вероятнее всего, рабочая выборка будет содержать большее количество элементов с малыми значениями яркости, и, следовательно, медиана будет находиться среди тех элементов рабочей выборки, которые соответствуют этой области изображения. Ситуация меняется на противоположную, если центр апертуры смещен в область более высокой яркости. Но это и означает наличие чувствительности у МФ к перепадам яркости.

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.