ПОЗНАВАТЕЛЬНОЕ Сила воли ведет к действию, а позитивные действия формируют позитивное отношение Как определить диапазон голоса - ваш вокал
Игровые автоматы с быстрым выводом Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими Целительная привычка Как самому избавиться от обидчивости Противоречивые взгляды на качества, присущие мужчинам Тренинг уверенности в себе Вкуснейший "Салат из свеклы с чесноком" Натюрморт и его изобразительные возможности Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д. Как научиться брать на себя ответственность Зачем нужны границы в отношениях с детьми? Световозвращающие элементы на детской одежде Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия Как слышать голос Бога Классификация ожирения по ИМТ (ВОЗ) Глава 3. Завет мужчины с женщиной 
Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д. Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. | Механические процессы в легких Основными характеристиками респираторной системы являются податливость (комплайнс) и сопротивление (резистанс). Величина податливости и сопротивления определяются давлением, потоком и объемом воздуха в легких. Для подачи заданного объема кислородно-воздушной смеси необходимо обеспечить определенный дыхательный поток. Его максимальная величина на вдохе называется пиковым инспираторным потоком, максимальная величина на выдохе – пиковым экспираторным потоком. При поступлении воздушного потока в легкие в них подается дыхательный объем и создается некоторое давление (Paw). В начале вдоха это давление максимальное, пиковое (Ppeak). Затем оно снижается. При наличии в конце вдоха паузы, во время которой нет движения воздуха в дыхательных путях, можно определить так называемое давление плато вдоха (Pplat). Отсутствие движения воздуха в дыхательной системе во время паузы вдоха приводит к уравниванию давления в трахее, бронхах, альвеолах. Измеряя величину Pplat датчиком давления, располагающимся у наружного конца интубационной трубки, можно оценить давление в альвеолах в конце вдоха (Palv). С точки зрения газообмена альвеолярное давление является очень важным параметром, поскольку отражает ту движущую силу, которая растягивает альвеолы и обеспечивает градиент давления между ними и легочными капиллярами. Кроме того, от величины Palv зависит венозный возврат к сердцу и вероятность повреждения альвеол. При выдохе происходит снижение Paw до того уровня положительного давления в конце выдоха (positive end expiratory pressure, РЕЕР), которое установлено врачом. Последняя величина называется внешним, или аппаратным РЕЕР. Кроме давления, измеренного возле проксимального конца интубационной трубки, клиническое значение имеет величина давления в нижней трети пищевода (Pes), отражающая колебания давления в плевральной полости. Если у пациента имеется ограничение выдоха, что бывает, например, при хронической обструктивной болезни легких (ХОБЛ), то воздух может задерживаться в легких. Вследствие этого поступающие новые порции дыхательной смеси приводят к развитию перерастяжения (гиперинфляции) легких. Одним из критериев оценки гиперинфляции является величина непреднамеренного (внутреннего) РЕЕР. Необходимо учесть, что в этом случае истинный РЕЕР может существенно отличаться от внешнего. Сопротивление дыхательных путей (R) рассчитывают как частное от деления разницы между Ppeak и РЕЕР на величину пикового потока. R = (Ppeak – РЕЕР) : V’ где V’ - пиковый поток. Податливость (С) определяется разницей давлений в легких во время вдоха и выдоха при введении в них определенного объема воздуха. Если в расчет принимается разница Pplat и РЕЕР, то податливость называется статической (Сstat). Сstat = V : (Pplat – РЕЕР) Строго говоря, для того, чтобы измеряемое респиратором давление соответствовало Pplat, нужно создать достаточно длительную паузу вдоха (обычно не менее 0,5 с). За столь длительный промежуток времени можно достичь уравнивания давления в разных альвеолах. Если столь длительная пауза не выдерживается, то в расчетах используют величину Paw , примерно соответствующую Pplat. В связи с этим показатель податливости называется динамическим (Сdyn). Сdyn = V : (Paw – РЕЕР) Величина, обратная податливости, называется эластичностью легких (E). E = 1/C Величина динамической податливости больше статической и зависит не только от эластических свойств легких, но и от сопротивления дыхательных путей. Для клинической практики важно понимать, что чем меньше податливость и больше сопротивление, тем труднее ввести дыхательный объем в легкие больного. Следовательно, тем большее давление в дыхательной системе для этого нужно создать. Однако энергия механического вдоха расходуется не только на растяжение легких, но и на преодоление эластичности окружающих структур: грудной клетки и живота, а также повязок и бандажей. На поступление воздуха в дыхательную систему влияют свойства: 1. эндотрахеальной (трахеостомической) трубки, 2. собственно легких, 3. грудной клетки. Грудная клетка представляет собой мышечно-реберный каркас. Наиболее изменчивы характеристики этого каркаса в его нижней части, которая занята диафрагмой. Смещение диафрагмы в краниальном направлении вследствие повышения внутрибрюшного давления является одной из наиболее частых причин изменения механических свойств грудной клетки. Поступление воздуха в легкие должно преодолеть силы эластичности. Несколько упрощая реальную ситуацию, можно выделить эластичность самих легких и эластичность грудной клетки. Соответственно раздельно рассматривают податливость легких и грудной клетки. Податливостью эндотрахеальной трубки в виду жесткости ее стенок обычно пренебрегают. Кроме того, воздух, поступающий в легкие, имеет определенную вязкость. Как всякая вязкая среда, воздушный поток преодолевает сопротивление тех структур, с которыми он контактирует. Поэтому различают сопротивление эндотрахеальной трубки и сопротивление дыхательных путей. Раздельный учет 4 факторов - сопротивления эндотрахеальной трубки (Ret), сопротивления дыхательных путей (Raw), податливости легких (CL) и податливости грудной клетки (CCW) - лежит в основе четырехкомпонентной модели легких. Использование этой модели полезно в клинической практике, поскольку позволяет рационально подбирать режимы ИВЛ. Влияние всех четырех компонентов приводит к формированию общего показателя – давления в дыхательной системе (Paw): Paw = (Ret x V’) + (Raw x V’) + (CL / V) + (CCW / V) Величину Paw можно измерить с помощью имеющегося во всех респираторах датчика давления, располагающегося в контуре аппарата ИВЛ. Для оценки отдельных компонентов респираторной системы используют дополнительные датчики давления, вводимые в трахею и пищевод пациента. Раздельную оценку сопротивлений эндотрахеальной трубки и дыхательных путей проводят при сравнении показаний датчиков, располагающихся в контуре аппарата и непосредственно в трахее. Анализ изменений трахеального давления позволяет исключить влияние интубационной трубки и оценивать сопротивление только дыхательной системы. Для определения CL и CCW используют информацию, получаемую также от двух датчиков: обычного, располагающегося у наружного конца интубационной трубки, и пищеводного, вводимого в нижнюю треть пищевода. Показания последнего соответствуют изменениям плеврального давления. Как известно, в состоянии выдоха давление в альвеолах равняется атмосферному. В нормальной физиологии величину атмосферного давления принято рассматривать как референтную точку, т.е. принимать ее в качестве нуля. В связи с этим во время выдоха в плевральной полости давление, которое ниже атмосферного, считается отрицательным (обычно -5 см вод. ст.). Такая величина давления нужна для уравновешивания эластичности легких и грудной клетки При вдохе динамика плеврального давления отражает разные физиологические процессы в зависимости от того, является ли вдох спонтанным или механическим. И при спонтанном вдохе, и при механическом происходит растяжение легких. В обоих случаях сила, которая движет воздух в легкие, создается за счет разницы давлений между альвеолами и окружающей средой. При механическом вдохе давление окружающей среды, создаваемое респиратором, больше давления в альвеолах. Увеличение давления в альвеолах приводит к росту плеврального давления, которое становится положительным. Иными словами, плевральное давление отражает ту силу, с которой растягиваемые респиратором легкие расправляют грудную клетку. Динамика Paw, измеряемого возле наружного конца эндотрахеальной трубки при механическом вдохе, определяется силой, с которой респиратор растягивает суммарно легкие и грудную клетку. |