МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Уравнения прямой и плоскости





Практическое занятие 36

Уравнения сферы, плоскости и прямой.

Форма проведения: Практическая

Цели урока:

Обучающая: закрепить понятие уравнения сферы,плоскостии прямой

Развивающая: развивать логическое мышление, пространственное воображение; умение сравнивать, проводить аналогию; интерес к предмету; творческие способности учащихся.

Воспитывающая: воспитывать взаимопомощь у учащихся через работу в группах; уважение к мнению других.

Оборудование:

раздаточный материал: карточки с заданиями, заготовки для вывода уравнения сферы, шкалы для оценки урока на этапе рефлексия, маркеры, магниты, чистые листы;

глобус, разминка для глаз в виде полушарий земной поверхности;

мультимедийные обеспечение.

Ход урока

Девиз урока Математику нельзя изучать, наблюдая, как это делает сосед! Древнегреческий поэт Нивен

Уравнения прямой и плоскости

Уравнение прямой на плоскости в декартовой системе координат можно задать уравнением вида

для случая, когда прямая не параллельна оси OY, и уравнением

для вертикальной прямой. Но прямая может быть также задана и другим способом. Достаточно указать вектор направления этой прямой и какую-нибудь точку , лежащую на этой прямой. При этом точки, лежащие на прямой, могут быть заданы с использованием векторных операций в виде так называемого параметрического уравнения прямой

в котором параметр t пробегает все значения числовой прямой. Координаты точки, соответствующей некоторому значению этого параметра, определяются соотношениями

( 3.4)

Прямую в пространстве тоже можно задавать параметрическим уравнением, которое очень легко получить из предыдущего простым переходом от двумерных векторов к трехмерным. Пусть . Тогда это уравнение будет определять прямую в пространстве, а координаты точек этой прямой будут определяться формулами

( 3.5)

Как известно из элементарной геометрии, через любые три точки в пространстве проходит плоскость. С другой стороны, через каждую точку плоскости можно провести единственную прямую, перпендикулярную данной плоскости. При этом все эти прямые будут параллельны друг другу, а значит, они имеют общий вектор направления. Этот вектор будем называть нормалью к плоскости. Если длина вектора равна единице, мы будем называть его единичной нормалью. В компьютерной графике часто приходится решать задачу построения нормали к некоторой плоскости, заданной тремя точками, а также задачи пересечения прямой с плоскостью и двух плоскостей.

Плоскость в пространстве можно задать, указав вектор нормали к ней и какую-либо точку, принадлежащую данной плоскости. Пусть - вектор единичной нормали, а - некоторая точка на плоскости. Тогда для любой точки , лежащей на плоскости, вектор будет ортогонален вектору нормали, а следовательно, выполняется равенство

Раскрывая это выражение в координатном виде, получаем

Теперь перепишем это уравнение в виде

( 3.6)

где . Это уравнение называется каноническим уравнением плоскости. При этом совершенно ясно, что если все это уравнение умножить на какой-либо отличный от нуля множитель, то оно будет описывать ту же самую плоскость, т.е. коэффициенты для каждой плоскости задаются с точностью до произвольного ненулевого множителя. Но если при этом вектор имеет единичную длину, то задает расстояние от начала координат до данной плоскости.



В алгоритмах компьютерной графики довольно часто приходится сталкиваться с задачей построения плоскости, проходящей через три заданные точки. Пусть три точки , и , не лежащие на одной прямой, имеют координатами и . Для канонического уравнения необходимо построить нормаль к плоскости, что легко можно осуществить, используя операцию векторного произведения. Поскольку векторы и лежат в искомой плоскости, то вектор будет ортогонален этой плоскости. Пусть , тогда уравнение плоскости будет иметь вид

Остается определить значение . Так как точка принадлежит этой плоскости, то ее координаты должны удовлетворять полученному уравнению. Подставим их в уравнение и получим

следовательно

и после подстановки окончательно получим:

( 3.7)

В большинстве алгоритмов, использующих плоскости, достаточно знать нормаль к ней и какую-либо точку, принадлежащую плоскости. Очевидно, что по аналогии можно вывести каноническое уравнение прямой на плоскости, если задана нормаль к ней и принадлежащая прямой точка.

Уравнение сферы

Найдем уравнение сферы радиуса R с центром в точке O1(x0;y0;z0). Согласно определению сферы расстояние любой ее точки М(х; у; z) от центра O1(x0;y0;z0) равно радиусу R, т. е. O1M= R. Но , где . Следовательно,

Это и есть искомое уравнение сферы. Ему удовлетворяют координаты лю­бой ее точки и не удовлетворяют координаты точек, не лежащих на данной сфере.

Если центр сферы Ο1 совпадает с началом координат, то уравнение сферы принимает вид .

Если же дано уравнение вида F(x;y;z) = 0 , то оно, вообще говоря, определяет в пространстве некоторую поверхность.

Выражение «вообще говоря» означает, что в отдельных случаях уравнение F(x; y; z)=0 может определять не поверхность, а точку, линию или вовсе не определять никакой геометрический образ. Говорят, «поверхность вырождается».

Так, уравнению не удовлетворяют никакие дей­ствительные значения х, у, z. Уравнению удовлетворяют лишь координаты точек, лежащих на оси Ох (из уравнения следует: у = 0, z = 0, а х — любое число).

Итак, поверхность в пространстве можно задать геометрически и ана­литически. Отсюда вытекает постановка двух основных задач:

1. Дана поверхность как геометрическое место точек. Найти уравнение этой поверхности.

2. Дано уравнение F(x;y;z) = 0. Исследовать форму поверхности, определяемой этим уравнением.

 

Вариант №1.

1. Сфера задана уравнением (x – 1)2 + y 2 + (z – 2)2 = 9.

1. Найдите координаты центра и радиуса сферы.

2. Определите, принадлежат ли данной сфере точки А(1; 3; -1) и В(2; 2; 1).

2. Сфера с центром в точке О(0; 1; -2) проходит через точку А(-3; 1; 2).

1. Составьте уравнение сферы.

2. Найдите координаты точек оси абсцисс, принадлежащих данной сфере.

3. Точки А(1; 2; -3) и В(7; 2; 5) лежат на сфере радиуса 13. Найдите

расстояние от центра сферы до прямой АВ.

Вариант №2.

1. Сфера задана уравнением x 2 + (y +3)2 + (z – 2)2 = 25.

1. Найдите координаты центра и радиуса сферы.

2. Определите, принадлежат ли данной сфере точки А(4; -3; -1) и В(0; 1; 3).

2. Сфера с центром в точке О(-1; 0; 2) проходит через точку А(1; 2; 1).

1. Составьте уравнение сферы.

2. Найдите координаты точек оси ординат, принадлежащих данной сфере.

3. Точки А(1; 5; 6) и В(1; -1; -2) лежат на сфере, центр которой удален от

середины отрезка АВ на 12. Найдите радиус сферы.

Вариант №3.

1. Сфера задана уравнением x 2 + y 2 + z 2 + 2y – 4z = 4.

a) Найдите координаты центра и радиуса сферы.

b) Найдите значение m, при котором точки А(0; m; 2) и

В(1; 1; m - 2) принадлежат данной сфере.

2. Диаметр сферы – отрезок АВ с концами А(2; -1; 4) и В(2; 7; 10).

a) Составьте уравнение сферы.

b) Найдите кратчайшее расстояние от точки данной сферы до плоскости Оxy.

3. Сфера задана уравнением (x + 3)2 + (y – 4)2 + (z + 1)2 = 25. Найдите

длину линии, по которой данная сера пересекается с плоскостью Оyz.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.