ПОЗНАВАТЕЛЬНОЕ Сила воли ведет к действию, а позитивные действия формируют позитивное отношение Как определить диапазон голоса - ваш вокал
Игровые автоматы с быстрым выводом Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими Целительная привычка Как самому избавиться от обидчивости Противоречивые взгляды на качества, присущие мужчинам Тренинг уверенности в себе Вкуснейший "Салат из свеклы с чесноком" Натюрморт и его изобразительные возможности Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д. Как научиться брать на себя ответственность Зачем нужны границы в отношениях с детьми? Световозвращающие элементы на детской одежде Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия Как слышать голос Бога Классификация ожирения по ИМТ (ВОЗ) Глава 3. Завет мужчины с женщиной 
Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д. Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. | Изменение атмосферного давления с высотой, барическая ступень, барометрическое нивелирование В начале XIX в. Дальтон сформулировал закон, гласящий: в покоящейся смеси газов каждый газ распределяется в пространстве независимо от присутствия других газов. В применении к атмосфере (если бы она действительно была покоящейся) это означало бы, что каждый газ, составляющий воздух, должен образовывать свою собственную атмосферу, а значит, доля легких газов должна была бы возрастать с высотой. В этом и заключается идея гравитационного разделения газов. Однако многочисленные и тщательные исследования с помощью летающих баллонов, ракет, а затем искусственных спутников показали, что процентное содержание составных частей сухого воздуха в нижних 100 км с высотой практически не изменяется. Это означает, что в нижних 100 км воздух, находящийся в постоянном движении, так хорошо перемешивается по вертикали, что атмосферные газы не расслаиваются по плотности, как это было бы в условиях неподвижной атмосферы. Этот слой атмосферы, толщиной 100 км, получил название гомосферы. Выше 100 км начинается расслоение газов по плотности, и оно постепенно увеличивается с высотой. Однако процесс разделения газов осложняется диссоциацией молекул на атомы под влиянием коротковолнового (ультрафиолетового) солнечного излучения. В слое от 100 до 200 км преобладающим газом атмосферы остается молекулярный азот N2. Что касается молекулярного кислорода, то процесс его превращения в атомарный начинается уже на высоте 20 км, на высоте 100 км оно достигает максимума, а на высоте 200 км число атомов кислорода сравнивается с числом молекул азота. Гравитационное разделение в чистом виде происходит только с благородными газами — аргоном и гелием. В нижних слоях аргона содержится в 1700 раз больше, чем гелия, выше 200 км аргона уже нет, а содержание гелия на высоте 1000 км только в три раза меньше, чем у поверхности Земли. Выше 1000 км атмосфера состоит главным образом из гелия и водорода в атомарном состоянии. На этих высотах начинает приобретать большое значение процесс ускользания легких газов из земной атмосферы в мировое пространство. Выше 1500 км в годы минимума солнечной активности атмосфера состоит из водорода, а в годы максимума активности — преимущественно из гелия. Таким образом, вся внешняя часть атмосферы (выше 100 км) характеризуется непрерывным изменением состава как по слоям, так и во времени. Поэтому эта часть атмосферы носит название гетеросферы. В отличие от составляющих сухого воздуха процентное содержание водяного пара в воздухе изменяется с высотой, начиная с самых нижних слоев. Водяной пар постоянно поступает в атмосферу снизу от земной поверхности. Распространяясь вверх, он конденсируется. Поэтому давление и плотность водяного пара убывают с высотой быстрее, чем давление и плотность остальных газов воздуха. Общая плотность воздуха становится вдвое меньше, чем у земной поверхности, на высоте 5—6 км, а плотность водяного пара убывает вдвое в среднем уже на высоте 1,5—2 км. На высоте 5—6 км давление водяного пара и, следовательно, его содержание в воздухе в 10 раз меньше, чем у земной поверхности, а на высоте 10—12 км — в сто раз меньше. Таким образом, выше 10—15 км содержание водяного пара в воздухе ничтожно мало. Наиболее точная формула, использующаяся для барометрического нивелирования, — формула Лапласа (1749—1827). Она получена для влажного воздуха с учетом изменения ускорения свободного падения с широтой и высотой. В метеорологии в большинстве задач используется барометрическая 'формула реальной атмосферы. Она имеет вид  где tm — средняя температура слоя между р1 и р2, tm в °С; = 1/273 — термический коэффициент объемного расширения газа; В — 18 400 м — барометрическая постоянная. Для небольшого перепада высот используется формула Бобине  где рн — давление на нижнем уровне z1, рв — давление на верхнем уровне z2. Быстрые подсчеты, связанные с изменением давления с высотой, можно сделать с помощью так называемой барической ступени. Напишем основное уравнение статики dp = - (gpdz) / (RdTm) в иной форме:  Выражение —(dz/dp) называется барической ступенью (или барометрической ступенью). Следовательно, барическая ступень — это приращение высоты, в пределах которого давление падает на единицу. Барическая ступень — величина, обратная вертикальному барическому градиенту —(dp/dz). Из формулы видно, что барическая ступень прямо пропорциональна температуре воздуха и обратно пропорциональна давлению. При одном и том же давлении барическая ступень тем больше, чем выше температура. Чем больше высота и чем, следовательно, ниже давление, тем больше барическая ступень. Подставив в формулу числовые значения g и Rd, можно найти барическую ступень для разных р и Тm. Как мы знаем, в метеорологии за единицу давления принят гектопаскаль. Тогда барическая ступень измеряется приростом высоты, на котором давление падает на 1 гПа. При температуре 0°С и давлении 1000 гПа барическая ступень равна 8 м/гПа. Таким образом, у земной поверхности нужно подняться примерно на 8 м, чтобы давление упало на 1 гПа. С ростом температуры барическая ступень растет примерно на 0,4 % на каждый градус. На высоте около 5 км, где давление близко к 500 гПа, при той же температуре 0°С барическая ступень будет уже около 16 м/гПа. Зная барическую ступень для разных р и Т, можно производить те расчеты, для которых применяются барометрические формулы, если только разность высот не очень велика. Допустим, что на уровне земной поверхности давление одинаково и в теплом и в холодном воздухе. Однако в теплом воздухе, где барическая ступень больше, нужно подняться на большую высоту, чем в холодном воздухе, чтобы давление упало на 1 гПа. При дальнейшем подъеме эта разница будет нарастать. Следовательно, в теплом воздухе давление падает с высотой медленнее, чем в холодном. Поэтому на высотах давление в теплом и холодном воздухе уже становится неодинаковым: на одной и той же высоте в теплом воздухе оно будет выше, чем в холодном. Иными словами, теплые области в атмосфере являются в высоких слоях областями высокого давления, а холодные области — областями низкого давления. |