МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Устойчивость и коагуляция коллоидных растворов.





Коллоидные растворы вследствие их большой удельной поверхности являются термодинамически неустойчивыми системами. Однако, в присутствии электролита-стабилизатора они приобретают два вида устойчивости:

1.Кинетическая устойчивость – это способность дисперсной фазы длительное время находиться во взвешенном состоянии. Она обусловлена тепловым броуновским движением. В коллоидных системах скорость теплового движения превышает скорость оседания частиц дисперсной фазы.

2.Агрегативная устойчивость – способность системы сохранять определенную степень дисперсности длительное время. Она обусловлена двумя факторами:

· Электростатическим отталкиванием одноименно заряженных диффузных слоев

· Действием «расклинивающего» давления между диффузными слоями при столкновении мицелл.

Все факторы, снижающие заряд гранулы, уменьшают диффузный слой и, следовательно, уменьшают агрегативную устойчивость.

Агрегативная устойчивость уменьшается:

· При повышении концентрации коллоидного раствора

· При добавлении электролита, который содержит ионы такого же знака, что и противоионы. Увеличение концентрации противоионов приводит к проникновению их в адсорбционный слой и снижению заряда гранулы. Действие электролита на снижение агрегативной устойчивости золей усиливается при увеличении концентрации электролита, заряда и радиуса противоиона.

· При повышении температуры. Так как происходит десорбция родственных ионов с ядра гранулы, что приводит к снижению ее заряда.

· При изменении рН среды. Для положительных золей – увеличение рН, для отрицательных золей – уменьшение рН.

 

Снижение агрегативной устойчивости вызывает коагуляцию коллоидного раствора.

Коагуляция – это процесс укрупнения частиц дисперсной фазы путем их объединения. Коагулирующее действие электролита подчиняется правилу Шульце-Гарди:

· коагуляцию вызывают только те ионы, заряд которых противоположен заряду гранулы

· коагулирующее действие ионов возрастает с увеличением их зарядов.

 

Пример: Положительно заряженная коллоидная частица.

 

 

Заряд гранулы положительный, значит, коагуляцию вызывают отрицательные ионы, т.е. анионы.

Электролиты: KCl, MgSO4, K3PO4. Анионы: Cl, SO42–, PO43–. Максимальной коагулирующей способностью будет обладать электролит K3PO4, так как содержит анион с бóльшим зарядом.

Электролиты: KCl, KBr, KI. Анионы: Cl, Br, I. Максимальной коагулирующей способностью будет обладать электролит KI, так как содержит анион с бóльшим радиусом.

 

 

СВОЙСТВА ВЫСОКОМОЛЕКУЛЯРНЫХ

СОЕДИНЕНИЙ И ИХ РАСТВОРОВ.

Практическая значимость темы

Совершенно очевидно, что без образования ВМС вообще невозможно было бы возникновение жизни на Земле.

Изучение свойств ВМС и их растворов имеет исключительно важное значение для понимания механизма биохимических и физиологических процессов в организме: обмена веществ, пищеварения, роста и старения организма, а также патофизиологических процессов: воспалений, отеков, почечно-каменной и желчно-каменной болезней, атеросклероза.

Высокомолекулярные соединения (ВМС) – это вещества, молекулы которых состоят из большого числа химически связанных атомов и имеют высокую молярную массу M > 5000 г/моль.



Молекулы ВМС представляют собой длинные цепи, состоящие из многократно повторяющихся группировок атомов, поэтому их называют макромолекулами.

 

Биополимеры

Одной из важнейших групп ВМС, которая особенно интересна для биологии и медицины, являются биополимеры.

Биополимеры – это высокомолекулярные вещества, обеспечивающие жизнедеятельность живых систем.

К ним относятся:

Белки.

Нуклеиновые кислоты (ДНК и РНК)

Полисахариды – целлюлоза, крахмал, гликоген.

Все они выполняют важнейшие различные функции в биосистемах.

Особые свойства ВМС

Полимеры обладают свойствами, которые отличают их от других классов веществ. К ним относятся:

Ø высокая молярная масса

Ø асимметричное строение

Ø гибкость и эластичность

1) Молярная масса полимеров колеблется в широких пределах от 5000 до десятков миллионов г/моль. (таблица 2)

Таблица 2

полимер М, г/моль
Целлюлоза 1 000 000 – 2 000 000
Гликоген 1 000 000 – 4 000 000
Крахмал: амилоза (10-20%) амилопектин (90-80%)   10 000 – 60 000 до 1 000 000
Гемоглобин 66 000 – 68 000
Альбумин более 75 000
Желатин до 60 000

 

2) Асимметричное строение-длина молекулы в 10 и 100 раз больше, чем диаметр

Диаметр длинных полимерных цепей равен диаметру молекулы низкомолекулярного соединения (НМС). Например, длина макромолекулы целлюлозы составляет 400-800 нм, а диаметр 0,3-0,75 нм. Для образного представления такие молекулы можно сравнить с нитями, имеющими длину от 1 до 4 метров, а диаметр 0,5 мм.

3) Гибкость и эластичность.

Гибкость макромолекул – это способность отдельных звеньев или участков (сегментов) цепи полимера вращаться или колебаться относительно валентных связей – С – С – , что приводит к изменению конфигурации цепи.

барьера требуется энергия, называемая энергией активации.

Гибкость и эластичность полимеров зависит от:

Ø температуры

При повышении температуры благодаря возрастанию кинетической энергии системы может быть снижен энергетический барьер, сегменты цепей будут легко вращаться или колебаться с большей амплитудой, и макромолекулы будут вести себя как гибкие нити, принимая всевозможные конфигурации. Поэтому при повышении температуры гибкость увеличивается.

Ø природы групп атомов в макромолекуле

Увеличение в макромолекуле количества полярных групп – ОН, – СООН, – CN, – Cl, усиливает внутримолекулярное взаимодействие, ограничивает свободу колебаний сегментов макромолекулы и понижает ее гибкость.

 

Ø расположения групп атомов в макромолекуле

Чем ближе расположены группы атомов, тем им легче взаимодействовать друг с другом и тем меньше гибкость.

Ø длины полимерной цепи и количества сегментов в молекуле

Ø Чем длиннее цепь и больше количество сегментов, тем выше гибкость макромолекул.

Ø Присутствие пластификаторов.

Пластификация – это процесс, в результате которого увеличивается эластичность полимера. С этой целью в полимер можно вводить низкомолекулярные вещества (пластификаторы), которые будут препятствовать взаимодействию цепей макромолекул друг с другом. Для полярных полимеров, например белков, пластификатором является вода, которая, гидратируя полярные группы, препятствует образованию связей между ними. Для неполярных полимеров пластификаторами будут неполярные вещества, например для вулканизированного каучука применяют сажу.

 

Свойства растворов ВМС.

Растворы полимеров являются лиофильными системами, поскольку между макромолекулами ВМС и молекулами растворителя существует сродство. При растворении ВМС наблюдается процесс сольватации – взаимодействие молекул растворителя с соответствующими группами полимера с образованием сольватных оболочек.

Таким образом, если между полимером и растворителем нет сродства, то получить раствор ВМС невозможно.

Если растворитель вода, то процесс называется гидратацией. В воде будут хорошо растворяться полярные полимеры, например белки. В растворах белков наблюдается два вида гидратации:

Ø Электростатическая

(ион-дипольное взаимодействие)

Ø Электронейтральная

(диполь-дипольное

взаимодействие)

водородные связи

 

Неполярные полимеры растворяются в неполярных растворителях (например, каучук в бензоле или спирте). При этом происходит процесс сольватации гидрофобных цепей молекулами неполярных органических растворителей за счет Ван-дер-Ваальсовых сил (Еа = 4 кДж/моль), в результате возникает гидрофобный тип сольватации:

 

Природа растворов ВМС.

В основе современной теории растворов ВМС лежат следующие положения:

Ø Полимеры образуют истинные растворы, в которых частицами дисперсной фазы являются макромолекулы, а не мицеллы. Это обусловлено, во-первых, их асимметричностью; во-вторых, мощной сольватной оболочкой. При таких условиях система гомогенна из-за отсутствия физической поверхности раздела между дисперсной фазой и средой.

Ø В концентрированных растворах полимеров появляется вероятность столкновения макромолекул, что приводит к образованию ассоциатов за счет взаимодействия между участками, лишенными сольватных оболочек. В отличие от мицелл, ассоциаты существуют кратковременно, распадаются и вновь образуются в различных участках объема системы и не являются постоянными кинетическими единицами.

Таким образом, растворы ВМС являются истинными растворами, проявляющими общие свойства с растворами низкомолекулярных соединений.

 





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.